
WARSAW UNIVERSITY OF TECHNOLOGY
F A C U L T Y OF M E C H A T R O N I C S

Ph.D. Thesis
Maciej Przybylski, M.Sc.

Mobile Robot Motion Planning in a Dynamic Environment

Supervisor
Professor Barbara Putz, Ph.D., D.Sc.

WARSAW 2018

I dedicate this work to my family.

I thank my parents for their support,

beloved wife Paloma for understanding

and daughter Zosia for her uplifting cheerfulness.

Acknowledgements

The work described in this thesis was conducted in part within the project 2012/05/B/ST6/03094

financed by the National Science Centre, and within the grants 504M-1141-0103-00,

504M-1141-0115-000, 504/02803, and 504/03270, financed by the Dean of the Faculty of

Mechatronics, which are gratefully acknowledged.

Streszczenie

Niniejsza rozprawa poświęcona jest planowaniu ruchu robotów mobilnych w otoczeniu

ruchomych przeszkód, co wymaga wprowadzenia zależności od czasu. W związku z tym

zaproponowano zdarzeniowy opis przestrzeni poszukiwań, w którym planowanie ruchu można

postrzegać jako synchronizację akcji robota ze zdarzeniami generowanymi przez ruchome

obiekty—wjazdem lub wyjazdem z danej komórki mapy 2D.

Przewodnim celem pracy było opracowanie algorytmów wyznaczających ścieżkę

bliską optymalnej w czasie obliczeń umożliwiającym działanie robota w świecie

rzeczywistym. Postawiony cel osiągnięto za pomocą zaproponowanego w pracy

hierarchicznego meta-algorytmu Real-time Switchback, który wykorzystuje przełączanie

kierunków przeszukiwania grafu w celu obliczenia heurystyki dla niższych poziomów

hierarchii. Ponadto opracowano dwa nowe algorytmy heurystycznego przyrostowego

przeszukiwania grafu: optymalny D* Extra Lite i sub-optymalny AD*-Cut, działające szybciej

niż ich odpowiedniki—wiodące algorytmy D* Lite i AD*. Nowe algorytmy wykorzystują

technikę przycinania drzewa przeszukiwań w celu reinicjalizacji gałęzi, których koszty mogły

ulec zmianie w wyniku pojawienia się lub zniknięcia przeszkód.

Celem potwierdzenia koncepcji, zaproponowano i zrealizowano system planowania ruchu

robota mobilnego w środowisku dynamicznym. Centralnym elementem systemu jest

trójpoziomowy algorytm oparty na Real-time Switchback, który wykorzystuje fakt, że wynik

planowania ruchu w przestrzeni pomijającej ruchome przeszkody może być wykorzystany

jako heurystyka do planowania ruchu zależnego od czasu. Proponowany algorytm łączy na

kolejnych poziomach hierarchii regularne przeszukiwanie mapy za pomocą A*, przeszukiwanie

przestrzeni konfiguracji za pomocą AD*-Cut oraz działające w czasie rzeczywistym

heurystyczne przeszukiwanie sześciowymiarowej przestrzeni stanów z warstwami czasowymi

opartymi na zdarzeniach. Cały system został przetestowany w realistycznej symulacji ruchu

robota w pomieszczeniach biurowych.

Chociaż pojedyncze elementy proponowanego systemu można odnaleźć w systemach

opracowanych przez ostatnie dziesięciolecia, hierarchiczna kompozycja algorytmów,

kompaktowy opis przestrzeni poszukiwań oparty na zdarzeniach oraz dwa nowe algorytmy,

D* Extra Lite i AD*-Cut, są oryginalnym wkładem autora w dziedzinie sztucznej inteligencji.

Co więcej, proponowane metody i algorytmy mają charakter uniwersalny, dzięki czemu

odnoszą się do dowolnego problemu, który może być sprowadzony do poszukiwania najkrótszej

ścieżki w grafie (np. planowanie ruchu w grach wideo, czy nawigacja samochodów).

Słowa kluczowe: hierarchiczne planowanie ścieżki, heurystyczne przeszukiwanie grafów.

7

Abstract

In this thesis, the problem of mobile robot motion planning in a dynamic environment

is addressed. The presence of moving obstacles introduces time dependency, which

significantly complicates the problem. Therefore, in this thesis, an event-based state-time

space decomposition is proposed, in which events are state-time points describing a moment

of entering or leaving a map cell by a moving obstacle. Then, motion planning among

moving obstacles can be considered an action-event synchronization, which is investigated for

applicability to robot motion planning (including kinematic and dynamic constraints).

The leading objective of the thesis is to develop motion planning algorithms that provide

a good trade-off between optimality and computation time. Thus, paths with bounded

sub-optimality that are obtained in a time to allow action in the real world are of interest. This

has been achieved using the proposed Real-time Switchback algorithm, a hierarchical search

algorithm that utilizes alternating search directions to compute abstraction-based heuristics.

In addition, the two new incremental heuristic search algorithms, optimal D* Extra Lite and

sub-optimal AD*-Cut, are presented. The algorithms utilize a search-tree cutting technique to

reinitialize search-tree branches affected by obstacle appearance and disappearance. Both novel

algorithms outperform the state of the art D* Lite and AD* algorithms.

Finally, as a proof of concept, the system for a differential-drive robot motion planning in

a dynamic environment is proposed. The core of the system is the three-level hierarchical

algorithm based on the Real-time Switchback algorithm, which utilizes the fact that a

non-temporal search space omitting moving obstacles can be used as an abstraction for

time-dependent planning. This hierarchical algorithm combines regular A* searching in a 2D

grid, AD*-Cut searching in a non-temporal state lattice, and a real-time A* running in a 6D state

lattice with event-based temporal layers. The entire system was tested in a realistic simulation

of an indoor environment.

Although single elements of the proposed system can be identified across systems developed

over the decades, the hierarchical composition of the algorithms, a compact event-based

search-space description, and the two new incremental search algorithms, D* Extra Lite and

AD*-Cut are the author’s novel contributions to the field of artificial intelligence. Moreover,

the algorithms and an event-based description of dynamic environments are general purpose.

Thus, all the proposed algorithms apply to any path-searching problem that can be represented

as a graph (e.g., motion planning in video games or vehicle routing).

Keywords: hierarchical path planning, incremental heuristic search.

8

Contents

Nomenclature 13

1 Introduction 15
1.1 Robot Motion Planning System in a Changeable Environment 16

1.2 Heuristic Search Algorithms . 17

1.3 Search-space Representation for Time-dependent Planning 19

1.4 Other Approaches . 19

2 Research Scope 21

3 Motion Planning for a Mobile Robot: A Review 23
3.1 Space Representation for Motion Planning . 23

3.1.1 Collision Detection . 25

3.1.2 Configuration-space Sampling . 26

3.1.3 Transitions in a Configuration Space and State Space 27

3.2 Motion Planning as a State-space Search . 29

3.3 Sampling-based Motion Planning . 33

3.3.1 Probabilistic Roadmaps . 34

3.3.2 Rapidly Exploring Random Tree . 35

3.4 Other Motion Planning Methods . 37

3.5 Conclusions . 38

4 D* Extra Lite: Incremental Planning 39
4.1 Incremental planning . 39

4.2 Intuition . 42

4.3 D* Extra Lite Algorithm . 44

4.4 Discussion of the Algorithm . 50

4.5 Example . 54

4.6 Benchmark results . 57

9

4.6.1 Planning with freespace assumption 59

4.6.2 Planning on maps with shortcuts and barriers 62

4.6.3 Benchmark results summary . 64

4.7 Conclusions . 65

5 AD*-Cut: Anytime Incremental Planning 67
5.1 Introduction . 67

5.1.1 Anytime Planning . 67

5.1.2 Anytime Incremental Planning . 69

5.1.3 Conclusions . 71

5.2 AD*-Cut Algorithm . 71

5.3 Benchmark Results . 72

5.4 Conclusions . 76

6 Planning in a Dynamic Environment 77
6.1 State-time space definition . 77

6.2 Related Work . 81

6.3 Event-based State-time Space Decomposition 84

6.4 Principles of a Minimum-time Path Search . 87

6.5 Minimum-time Path Search in a Safe Interval Graph 90

6.6 Action-event Synchronization for Mobile Robot Motion Planning 92

6.6.1 Simple Action-event Synchronization 93

6.6.2 Simple Action-event Synchronization for Long Actions 94

6.6.3 Action-event Synchronization with Acceleration Limits 95

6.6.4 Action-event Synchronization with Cost-map Constraints 96

6.7 Variants of a Time-dependent Heuristic Search 98

6.7.1 Real-time Planning . 98

6.7.2 Anytime Time-dependent Planning 102

6.8 Experimental Results . 102

6.9 Conclusions . 103

7 Hierarchical Planning in a Dynamic Environment 107
7.1 Hierarchical Planning: Background . 107

7.1.1 Abstraction Hierarchies . 107

7.1.2 Refinement Planning . 109

7.1.3 Planning with Abstraction-based Heuristics 111

7.1.4 Switchback: Optimal Bottom-up Search 113

10

7.1.5 Optimal Top-down Search . 114

7.1.6 Conclusions . 116

7.2 Search Space for Hierarchical Planning in a Dynamic Environment 117

7.3 Hierarchical Planning in a Fully-known Dynamic Environment 118

7.4 Real-time Hierarchical Planning in an Unknown Dynamic Environment 121

7.4.1 Real-time Switchback . 122

7.4.2 Incremental Real-time Switchback . 122

7.4.3 Experimental Results . 125

7.5 Conclusions . 129

8 Hierarchical Motion Planning in a Dynamic Environment for a Mobile Robot 131
8.1 Differential-drive Mobile Robot Model . 131

8.2 System Overview . 134

8.2.1 Two-dimensional Global Grid Search 135

8.2.2 Global State-lattice Search . 135

8.2.3 Local Real-time State-lattice Search in a Dynamic Environment 136

8.2.4 Partial Motion Planning Using a Safe Interval Graph 138

8.2.5 Obstacle Motion Detection . 140

8.2.6 Trajectory Tracking Algorithm . 140

8.3 Experiments . 141

8.4 Conclusions . 145

9 Summary 147
9.1 Main Contributions . 147

9.2 Conclusions and Future Work . 150

References 151

List of Algorithms 163

Index 164

11

Nomenclature

A robot

A(q) robot at configuration q

A(s) robot at state s

A action space

a action, specifically, as1,s2 is an action transiting a robot from state s1 to state s2

arc directed-graph edge

digraph directed graph

dof degrees of freedom

search space space in which a solution of a given problem is sought; depending on a

particular problem, this could be either a configuration space, a state space,

or a graph

C, C-space configuration space: a set of configurations

CT configuration-time space

E set of graph edges (or arcs for a digraph), specifically E(G) for graph G

e graph edge (or arc for a digraph)

G graph G = (V (G), E(G))

Γ collision-free plan consisting of actions

γ(a) transition function that returns an action end state

O obstacle region of a workspace

O(t) obstacle region of a workspace at time t

13

Oi i-th obstacle region

Oi(t) i-th obstacle region at time t

ω rotational velocity of a robot

φ(·) homomorphism φ(v) for graphs or state abstraction mapping φ(s) for states

φE(·) edge homomorphism φE(e) for graphs or action-abstraction mapping φA(a) for

actions

Π collision-free path consisting of states or graph nodes

q configuration

S state space: a set of states

s state

S1 S1 = [0, 2π), where 0 and 2π are glued to represent robot orientation

ST state-time space: a set of state-time, (s, t), pairs

T set of time points

t time stamp

τ(a, p) motion primitive (a continuous trajectory) represented by an action a an

parametrized with p

τ(p) motion primitive (a continuous trajectory) parametrized with p

V set of graph vertices (nodes), specifically V (G) for graph G

v graph vertex (node) or longitudinal velocity of a robot

W workspace, such thatW \O is a free space

14

1. Introduction

Recent progress in robotics allows using robots in unstructured and dynamically changing

environments (e.g., unmanned ground vehicles, unmanned aerial vehicles, autonomous cars,

personal robots, robotic vacuum cleaners, and collaborative robots). A robot working in such

an environment should react quickly to occurring changes. At the same time, it is expected to

perform an optimal (or near-optimal) plan, which is a nontrivial problem. Therefore, fast and

robust algorithms for motion planning in dynamic environments are highly required.

The work of a robot in a real environment entails such aspects as environmental variability

and lack of full knowledge. One of the major problems in robotics is planning in an unknown

or a partially-known environment (i.e., a new knowledge is gathered during a plan execution,

which induces a need for re-planning). Such problems are addressed by incremental search

algorithms. Although incremental search algorithms are often referred to as planning in a

dynamic environment, most are designed for planning in a static environment. (Incremental

search algorithms typically treat all obstacles in an environment as stationary objects.)

In this thesis, the term static environment refers to objects that will not move within a

predictable time horizon (i.e., objects that cannot move or can change position sporadically,

such as office chairs). The term dynamic environment refers to both sporadic changes of static

objects and changes induced by moving obstacles (e.g., people, cars, and other robots). Planning

among moving obstacles introduces a time dependency; therefore, it will also be referred to as

time-dependent planning. Finally, wherever a particular type of environment variability is not

important, the term changeable environment will be used.

In both static and dynamic environments, a robot may possess full, partial, or no

knowledge about the environment. In this thesis, the problems of planning in an unknown

static environment and planning in an unknown, partially-known, and fully-known dynamic

environment are addressed.

15

1.1 Robot Motion Planning System in a Changeable

Environment

A system for a robot working in a changeable environment must perform several activities, such

as sensory data acquisition, localization, moving-obstacle tracking, global path planning, and

local collision avoidance. All of these activities must be performed under time constraints; the

more time is consumed by sensory data processing, the less time is left for planning. Typically,

to fulfill time requirements, some activities can be performed in parallel, for example, map

updating and path planning or global path planning and local collision avoidance. However, a

major efficiency gain can be achieved using efficient path-planning algorithms that are designed

to work in a dynamic environment.

Most modern robotic systems have a layered architecture. Typically, layers reflect the

temporal decomposition of a robotic system (e.g., path planning, local obstacle avoidance,

emergency stopping, and motor speed control), where each layer is running with a different

bandwidth (Fig. 1.1) [1, Ch. 6].

Path planning

Collision Avoidance

Emergency stop

Motor control

0.2 Hz

20 Hz

100 Hz

200 Hz

Figure 1.1: Sample temporal decomposition of a robot navigation system. Adapted from [1,
Ch. 6].

A more detailed decomposition of system activities for path planning in a changeable

environment is shown in Figure 1.2, where activities written in bold are in the scope of

the present study (i.e., global path planning, local collision avoidance, and path/trajectory

following). These three concerns, with reactive emergency behaviors, are typically considered

separately, which simplifies the design and implementation of the robotic system. Furthermore,

it is a common approach to utilize a one-direction top-down work-flow, such that higher-level

layers provide plans or commands to lower-level layers. However, it may happen that a

global planner will generate a plan that is infeasible to execute by a path-following algorithm.

Therefore, it is important to design such a planning algorithm or a composition of algorithms

that is aware of the robot capabilities and constraints (e.g., kinematic and dynamic constraints

or sensory reading inaccuracy).

16

Global path planning

Local collision avoidance

Motor control

MotorsReceptors

Path/Trajectory following

Emergency stop

Sensory data
processing:

Localization,
Map updating,

Moving obstacles
tracking

Figure 1.2: Temporal decomposition for path planning in a dynamic environment. The system
activities tackled in the present study are written in bold.

Heuristic search, initiated by the seminal work of Hart, Nilsson, and Raphael, who

introduced the A* algorithm [2], is one of the basic artificial intelligence (AI) tools to address

motion planning problems, including additional concerns, such as limited planning time, plan

feasibility, and hierarchical decomposition of planning levels. In the present work, a hierarchical

composition of heuristic search algorithms for mobile robot motion planning in a dynamic

environment is formally described and thoroughly tested; therefore, heuristic search will be

discussed in the following section.

1.2 Heuristic Search Algorithms

In AI, a robot is considered an embodied intelligent agent [3, Ch. 2], [4], for which interleaving

of planning and acting is one of the main problems [5, Ch. 2]. This problem can be solved using

a heuristic path search in a graph. Heuristic search algorithms utilize a cost function that guides

searching toward a goal, reducing the calculation time.

The optimality of a provided solution is an important property of heuristic search algorithms.

It has been shown that A* used with a heuristic cost function (in short, a heuristic) that does

not overestimate a true cost (an admissible heuristic) returns an optimal solution (the shortest

path). Moreover, sub-optimal or near-optimal heuristic search algorithms based on A* exist.

Typically, sub-optimal heuristic search algorithms use an overestimating heuristic that, in some

cases, speeds up searching (e.g., anytime search algorithms [6, 7, 8]). The term near-optimal is

connected to the limited resolution of a search space (a graph) (i.e., although the path found in

a graph is optimal, there can exist a shorter path in a continuous space).

17

Reactivity and optimality are two desirable properties of robotic systems. However, an

optimal solution can be achieved only through global planning, in which computation time

depends on the length of a solution. As it is difficult, if even possible, to achieve an optimal

solution in real time, it is important to develop techniques that speed up planning.

Heuristic search algorithms can be sped up using several techniques. For example,

incremental search algorithms (e.g., Focussed-D* [9], D* Lite [10], IGPPR [11], or

MPGAA* [12]) are able to perform quick, optimal re-planning by reusing knowledge from

previous searches, which makes these algorithms suitable for planning in unknown or

partially-known static environments.

The aforementioned incremental planning algorithms have been successfully used in

robotics and video games. The important contribution of this thesis is the D* Extra Lite

algorithm [13] that outperforms a state-of-the-art D* Lite in planning in unknown static

environments. In the thesis, the AD*-Cut algorithm is also presented, which extends D* Extra

Lite to an anytime heuristic search algorithm, similarly as AD* extends D* Lite.

Regardless of the particular domain and problem, it is always possible to reduce the time

of planning through a reduction of the search horizon, that is, using a local search that can be

interrupted before it finds a global solution. Although a local search allows quicker reaction,

possibly in real time, in general, it does not give any warranties on solution optimality.

Another serious disadvantage of a local search is that an agent may be trapped in a local

minimum. However, this has been overcome in the learning real-time algorithm (LRTA*) [14],

which is complete in safely explorable domains (i.e., in domains in which the effects of each

action can be reversed). A possible use of real-time search algorithms for planning in a dynamic

environment is also investigated in this dissertation. Finally, with the additional assumptions

that will be discussed, a real-time search approach has been applied to the task of local collision

avoidance.

In complex domains, a simple heuristic cost function may provide too little information to

plan quickly. In such cases, it is possible to solve a simplified problem (an abstract problem) and

use an abstract plan cost as a heuristic that guides a search in an original search space, which is

called hierarchical planning with abstraction-based heuristics. The best results are obtained if a

search direction is switched between hierarchy levels, which has been utilized by the AltO [15]

and Switchback algorithms [16, 17]. This technique is widely used in robot motion planning

[11, 18], even in approaches that are not a typical search (e.g., NF1 navigation function in the

global dynamic window approach [19]).

However, in the aforementioned algorithms, abstraction-based heuristics are used with, at

most, one abstraction level, and the algorithms are not explicitly referred to as a hierarchical

search. Another approach to hierarchical planning is the hierarchical refinement [20] that solves

18

a problem in a top-down manner, such that abstract actions are refined at a lower planning

level. The main disadvantage of a hierarchical refinement, already mentioned in the context of

layered software architectures, is that the refinement of an abstract may not exist; hence, such

an algorithm is incomplete.

It should be noted that many robotic systems, by separation of path planning and local

collision avoidance, use some form of refinement planning. The final result of this thesis

is the system for mobile robot motion planning that utilizes hierarchical planning with an

abstraction-based heuristic. The system consists of the following three levels: the forward

search in a simplified static environment (A*), the anytime incremental backward search in a

static environment including the kinematic constraints of the robot (AD*-Cut) and the real-time,

local forward search in a dynamic environment including the kinematic and dynamic constraints

of the robot (local A*).

1.3 Search-space Representation for Time-dependent

Planning

Planning in an environment with moving obstacles introduces time dependency; thus, a search

space needs to be increased by the dimension of time [21]. A generation of a state-time space by

regular discretization of time leads to a significant increase in the number of states; therefore, a

more compact representation for planning among moving obstacles is desirable (e.g., safe time

intervals [22] or obstacle layers presented by the author in an earlier work [23, 24]).

In this thesis, an event-based state-time space decomposition is proposed. In this approach,

events that represent obstacles entering and leaving map cells are used to describe obstacle

movements. An event-based decomposition generalizes both safe time intervals and obstacle

layers methods.

1.4 Other Approaches

Although the approach presented in this dissertation is based on heuristic search algorithms,

other efficient motion planning methods, such as sampling-based algorithms, exist.

Sampling-based algorithms were proposed as an efficient alternative to exhaustive search

algorithms that could struggle in high-dimensional search spaces [25]. To find a collision-free

path, algorithms of this kind randomly select configurations from a continuous configuration

space. Most sampling-based planning algorithms are non-optimal (i.e., the only objective is to

find a collision-free path, regardless of its length). A major disadvantage of these algorithms

19

is that, for the same problem, they may produce totally different and unpredictable solutions.

Moreover, it has been shown that a heuristic search used for dual-arm mobile robot motion

planning performs as well as sampling-based methods[26], while providing solutions with a

bounded sub-optimality.

Several algorithms related to motion planning in a dynamic environment were developed

in the field of autonomous cars, in which a significant boost can be observed in recent years

[27, 28]. In this context, a problem of navigation in a changeable environment is considered

(local collision avoidance) and has been widely studied. A survey on this topic can be found in

[29]. Most local collision avoidance algorithms calculate the best control input (e.g., velocity)

that assures collision-free motion for a certain time period (e.g., vector field histogram [30]

or dynamic window approach [31]). However, local collision avoidance, if not supported by

a global objective function (e.g., a heuristic), may provide sub-optimal solutions or even get

stuck in a local minimum [19]. As will be shown in this thesis, a local search using a heuristic

provided by a global search can help overcome these problems.

20

2. Research Scope

The main objective of this thesis is to develop algorithms for mobile robot motion planning in a

dynamic environment that provide a good trade-off between optimality and computation time.

The planning in a dynamic environment is a complex task that tackles a number of problems.

The presented work focuses on two important activities of a robotic system:

• global path planning in a static environment (also considering sporadic changes in static

objects positions that occur between planning episodes)

• local path planning in a dynamic environment (with both static and moving obstacles).

It must be noted that each system for motion planning in a dynamic environment requires a

robust moving-obstacle detection algorithm; however, this is not discussed here. Other aspects

of mobile robotics, such as localization and map building are also out of the scope of the thesis.

Among a number of algorithms for robot motion planning developed over the decades, the

following algorithms and methods are especially beneficial regarding the stated objective:

• hierarchical search algorithms that can speed up a search [16],

• incremental search algorithms, able to re-plan quickly by reusing information from

previous searches and providing optimal solutions [10],

• anytime search algorithms quickly providing a path with bounded sub-optimality [32],

• local search algorithms, able to provide solutions in a near real time [14],

• compact time representation methods that can be used for planning among moving

obstacles [22].

The following theses of this dissertation are proposed.

Proposition 2.1 A trade-off between optimality and computation time, which allows for mobile

robot motion planning in a dynamic environment, can be achieved by a hierarchical composition

of heuristic search algorithms of distinct classes (i.e., anytime, incremental, and real-time

search algorithms).

Proposition 2.2 An incremental and anytime incremental search can be sped up using a

search-tree branch cutting technique.

Proposition 2.3 An event-based description reduces the size of a search space for

minimum-time robot motion planning among moving obstacles.

21

The contributions of the present study are five-fold.

• A new incremental search algorithm, D* Extra Lite, has been developed for optimal path

planning in a changeable environment (also presented in [13]). Moreover, D* Extra Lite,

which utilizes the search-tree branch cutting technique, outperforms the state-of-the-art

D* Lite algorithm [10].

• A new anytime incremental search algorithm, AD*-Cut, which extends ideas used by D*

Extra Lite, has been developed. In addition, AD*-Cut provides a sub-optimal solution

very quickly and constantly improves the solution in the remaining time, outperforming

AD* [32], another anytime incremental search algorithm.

• An event-based representation of a search space for time-dependent planning has

been proposed, which is an enhancement of obstacle layers [23] that were previously

proposed by the author, and is a generalization of other state-of-the-art approaches,

such as free intervals [33] and safe intervals [22]. With an event-based description,

time-dependent motion planning can be viewed as an action-event synchronization, for

which synchronization methods are discussed.

• Based on the author’s previous work [24, 34], a Real-time Switchback algorithm was

proposed, which is a real-time version of the Switchback algorithm [16], in which higher

levels provide a heuristic to lower levels. Switchback and the Real-time Switchback can

be considered a general framework for an abstraction-based heuristic search; thus, in the

final system for a mobile robot, the three different algorithms, namely, A*, AD*-Cut, and

local A*, have been combined at the three consecutive levels of planning.

• The proposed algorithms have been evaluated in the system for mobile robot motion

planning among moving obstacles. In addition to the aforementioned algorithms, the

system utilizes such approaches as safe, real-time local motion planning [35], and applies

an event-based state-space description to dynamically feasible motion planning [18].

This dissertation is organized as follows. In Chapter 3, principles of motion planning

for a mobile robot are presented, including state-of-the-art motion planning algorithms. In

Chapter 4, a new incremental search algorithm, D* Extra Lite, is presented. Next, AD*-Cut, an

algorithm extending D* Extra Lite to an anytime version is introduced (Ch. 5). An event-based

representation for motion planning in a dynamic environment is discussed in Chapter 6. Finally,

hierarchical methods for motion planning are introduced in Chapter 7 and applied to the task

of differential-drive robot motion planning among moving obstacles (Ch. 8). A summary and

discussion of future work conclude the dissertation (Ch. 9).

22

3. Motion Planning for a Mobile Robot:
A Review

In this chapter, an introduction to robot motion planning is given, including basic definitions and

an algorithm discussion. The chapter begins with a discussion of search-space representations

for motion planning, which are a configuration space and a state space (Sec. 3.1). Then, methods

for search-space decomposition and sampling are discussed (Sec. 3.1.2). Robot movements

in a workspace are reflected by transitions in a configuration space (or a state space), which

are described in Section 3.1.3. Transitions in a configuration space can be represented as

graph edges, which is a common representation of a search space utilized by motion planning

algorithms, among which two major approaches can be distinguished, which are planning as

a graph search (Sec. 3.2) and sampling-based planning (Sec. 3.3). Other algorithms related to

mobile robot motion planning, such as algorithms for local collision avoidance, are discussed

in Section 3.4.

3.1 Space Representation for Motion Planning

In motion planning, a mobile robotA is considered a rigid body placed in a workspaceW = Rn

(e.g., 2D or 3D) [25]. The position of a rigid body in a workspace is the position of all of its

points. For a rigid body, as its points cannot change relative positions, it is useful to consider

a robot as a shape in 2D space or a volume in 3D space. For example, a wheeled robot can

be described as a polygon on a plane (W is a 2D space) (Fig. 3.1). It is convenient to

define the robot local frame of reference as attached to some specific point (e.g., a center of

rotation). Thus, a position and orientation of a robot can be described by q = (x, y, θ) or

q = (x, y, z, α, β, γ) coordinates for 2D and 3D workspaces, respectively, where q is called a

configuration. In a 2D workspace, a configuration consists of 2D point coordinates (x, y) ∈ R2

and a rotation angle θ in S1 = [0, 2π) (Fig. 3.1). A set of all possible configurations is called a

configuration space or simply a C-space, denoted by C, where C = R2 × S1.

Typically, a workspace is bounded and may contain an obstacle region O ⊆ W , such that

W \ O is a free space. If a region occupied by a robot at configuration q intersects with an

23

x

y

(x,y)

θ

Figure 3.1: Robot in C = R2 × S1 space.

obstacle region, the robot is in collision. Consequently, a set of configurations exist, Cobs, in a

configuration space, for which a robot is in collision, namely,

Cobs = {q ∈ C|A(q) ∩ O 6= ∅}. (3.1)

It is important to note that Cobs already considers the shape of the robot A(q); thus, every

configuration q in Cfree = C \ Cobs must be collision-free. A Cobs region can be constructed as

shown in Figure 3.2, that is, by sliding the object contour around the obstacle.

Obstacle

A(qa)

A(qf)

A(qe)

A(qd) A(qc)

A(qb)

Cobs

Obstacle

Cobs
A(qa)

A(qb) A(qc)

A(qd)

A(qe)

A(qf)A(qg)
A(qh)

A(qi)

θ=0° θ=45°

a) b)

Figure 3.2: A C-space construction method for two distinct, fixed robot orientations: a) θ =
0◦and b) θ = 45◦.

A collision-free path between qstart and qgoal configurations is a path in a continuous

configuration space parametrized with p ∈ [0, 1], namely, τ(p) : [0, 1] → Cfree, such that

qstart = τ(0) and qgoal = τ(1).

24

3.1.1 Collision Detection

Although motion planning is held in C-space, usually, there is no need to explicitly construct

Cobs or Cfree. For example, sampling-based planning algorithms perform collision checking

only for selected configurations.

Collision checking algorithms for 2D and 3D models have been investigated for decades. A

few surveys on this topic can be found in [36, 37, 38]. Such algorithms are usually designed for

a particular space, 2D or 3D, and particular object representations (e.g., polygons in 2D space or

polyhedra in 3D space). Even though collision checking is a time-consuming operation, some

algorithms, such as the Lazy PRM algorithm [39], postpone collision checking until any path is

found (if collision along the path is detected the algorithm repeats planning).

A representation of a robot and obstacles by means of polygons or polyhedra allows for an

exact collision detection. However, in mobile robotics, an environment map is built upon the

range measurements that are represented as point clouds. An object reconstruction from a point

cloud is a complex problem. Therefore, a common approach is to store points representing

obstacles in occupancy grids, images (2D), voxel-grids (3D), or in tree-like structures with

regular grid properties, such as the quad tree (2D) or octree (3D) [40, Ch.14], or in kd-trees that

are designed for an efficient nearest-point search [41]. A sample 2D occupancy grid built by a

simultaneous localization and mapping (SLAM) algorithm [42] is shown in Figure 3.3a.

a) b)

Figure 3.3: A 2D occupancy grid built with the use of the SLAM algorithm (a) is a typical
representation for mobile robot localization and motion planning, where black points denote
obstacles, white area denotes free space, and gray area denotes an unknown space). (b) A
configuration space represented by a 2D grid with obstacles inflated by the robot circumscribed
radius (dimmed regions around black points).

To speed up calculations, collision detection can be performed in two phases: a broad phase

used for objects that are far from each other, thus only their bounding regions are checked

for collision, and a narrow phase in which exact models are checked [25]. Such an approach

is utilized by wheeled robots (like the robot in Figure 3.1), that is, in the broad phase, the

25

robot contour is approximated with the circumscribed circle. An important advantage of the

circumscribed circle used as the bounding region is that Cobs is the same for each orientation

θ; therefore, collision checking can be performed in R2, which is simplified compared to the

original, C = R2 × S1, configuration space (Fig. 3.3b). Another advantage of grid-based

configuration spaces is that each grid cell may contain a value representing an occupancy

uncertainty or a distance to the nearest obstacle (or a composition), which, in contrast to binary

free/occupied information (utilized by most sampling-based planners), eases calculation of a

smooth path running at a safe distance from obstacles.

3.1.2 Configuration-space Sampling

As it is impossible to visit all configurations in a Cfree, a collision-free path search is performed

only for selected configurations. Configurations can be picked at random (sampling-based

algorithms) (Fig. 3.4a) or can be vertices of a grid (Fig. 3.4b), a special case of a regular lattice.

A set of selected configurations with a set of arcs connecting them, which is merely a graph,

is called a roadmap. Hence, a roadmap constructed from configurations picked at random has

been called a probabilistic roadmap, which is also the name of the state-of-the-art algorithm,

PRM [43] (discussed in Sec. 3.3.1).

If Cobs can be described with polygons, it is also possible to construct a Voronoi diagram

(Fig. 3.4c) or a visibility graph (Fig. 3.4d). While visibility graphs allow the computation of

the shortest path that runs through nearby obstacles, planning in Voronoi diagrams results in

maximum-clearance paths that run in the middle of a free space.

The relationship between a grid search and probabilistic roadmaps has been investigated in

detail by La Valle et al. in [44], who analyzed these two approaches in terms of dispersion

(i.e., the radius of the largest ball that does not contain any other sample) and concluded

that regular grids provide the best possible dispersion. A drawback of regular grids is that

the number of samples grows exponentially in dimension number, which makes a grid search

intractable for high-dimensional spaces. To overcome the dimensionality issue of a grid search,

Lingelbach proposed probabilistic cell decomposition [45], which is a method that utilizes the

advantages of the regular neighborhood and probabilistic sampling of the grid. On the other

hand, sampling-based methods suffer from other issues. An obstacle region Cobs can take an

elaborate shape with narrow passages (Fig. 3.4). Probabilistic methods that focus on filling

large uncovered C-space regions may struggle to build a roadmap, passing by such a narrow

passage.

Algorithms that explore a configuration space using random sampling (trying to improve

sample dispersion) are said to be probabilistically complete, that is, if a solution for a given

26

a) b)

qstart

qgoal

c) d)

Figure 3.4: Methods of configuration-space sampling: a) a probabilistic roadmap (random
sampling), b) a four-connected grid, c) a Voronoi diagram, and d) a visibility graph (the labeled
dots are the the start and goal configurations, the solid lines are pre-computed edges, the dashed
lines are edges added when the start and goal configurations are known).

problem exists, the algorithm will eventually succeed. On the other hand, if there is no solution,

the algorithm will never terminate. For a finite grid-based roadmap, a complete search algorithm

can be used (i.e., the algorithm that returns success or failure in a finite time), and if the

algorithm is optimal (e.g., A*), it is also optimal up to the grid resolution. However, if the

grid-search algorithm subsequently increases resolution after each unsuccessful search, then, if

there is no solution, it may run forever, similarly to sampling-based algorithms [46].

3.1.3 Transitions in a Configuration Space and State Space

A single roadmap arc connecting two points in C-space represents transitions in that space. Such

a connection can be as simple as a straight line, as shown in Figure 3.4a. However, real robots

have limited acceleration, which imposes dynamic and kinematic constraints (non-holonomic

constraints are imposed on a position and velocity). For example, a car-like robot can move

27

only along a circle with a limited radius; hence, a path consisting of straight lines may be

infeasible. A simple approach to satisfy kinematic constraints is to apply path smoothing in

the post-processing phase [25]. Unfortunately, there is no guarantee that a smoothed path will

be collision-free and will simultaneously satisfy kinematic or dynamic constraints. A proper

solution is to use planning only for feasible transitions between consecutive configurations.

If kinematic and dynamic constraints are considered (which is referred to as kinodynamic

planning), the state of a robot is described by a configuration and its first-order time derivative

(i.e., s = (q, q̇)). A set of all possible states is called a state space and will be denoted as S. For

example, the state of a differential-drive mobile robot is s = (x, y, θ, ẋ, ẏ, θ̇), though it is more

convenient to use s = (x, y, θ, v, ω), where v is longitudinal velocity and ω is rotational velocity,

defined in the robot local frame of reference. It should be noted that, in the AI community, the

term state has a more general meaning and refers to any vector (or tuple) consisting of variables

that describe a given system [3, 5]; therefore, a simple configuration is also referred to as a state.

In this dissertation, the term state will be used in that broader meaning.

A transition in a state space is an action a ∈ A, where A is an action space. In the context

of motion planning, an action represents a motion primitive, that is, a path in a state space,

τ(a, p) : A× [0, 1]→ S, where p is a parameter with values from [0, 1].

Two main approaches to motion primitive generation can be distinguished as follows. The

first approach is used when a motion is allowed only between states that are vertices of a regular

lattice (also referred to as a state lattice), then a feasible path between state-lattice vertices

needs to be computed, which is called local planning. Typically, such local planning requires an

inverse kinematic model of a robot or at least a forward kinematic model and a feedback-control

algorithm. However, this can be infeasible when a model is complex; in that case, the second

approach is preferred. In a given state, it is possible to apply some control input (e.g., velocity

or acceleration) for a certain time, resulting in a motion primitive with a final state computed

using a forward model. (It should be noted that it is almost impossible to guarantee that the

begin and end states of such a motion primitive will belong to lattice vertices.)

While the former approach is utilized by exhaustive search algorithms, the latter approach

is common for sampling-based methods (e.g., rapidly exploring random tree (RRT) [47],

discussed in Sec. 3.3.2, with an exception to hybrid-state A* [48, 11] that is similar to a

state-lattice search), but states expanded during a search do not have to fit the vertices of a

lattice. (In hybrid-state A*, a regular grid is used to achieve particular dispersion, that is, only

a single state per grid cell can exist.)

28

Precomputed Motion Primitives

As regular sampling yields a regular neighborhood, it is beneficial for precomputed actions that

connect neighboring states. In the most simplified case, motion planning for a mobile robot

can be conducted in a 2D state space (only x, y coordinates are represented) in which actions

are the arcs of a four- or eight-connected grid (i.e., a robot can move in cardinal or cardinal

and diagonal directions to the nearest neighboring state, respectively). The shortest path found

by a 2D-grid search will overestimate the true distance (measured along a straight line). To

reduce this effect, 16-connected 2D grids can be used. In a 16-connected grid of δ resolution,

arc lengths are equal to 1 · δ,
√

2 · δ, and
√

5 · δ for cardinal, diagonal, and remaining arcs,

respectively (Fig. 3.5). As shown in [11] the shortest path calculated in a 16-connected 2D grid

overestimates the true cost by, at most, 3%.

0

0

1 2-2 -1

1

2

-1

-2

Figure 3.5: Arcs corresponding to node successors in a 16-connected grid.

Although planning in a 2D state space is very quick, paths computed in such a space are

not continuous with respect to an orientation; therefore, they are impossible or hard to follow

by non-holonomic mobile robots (e.g., differential-drive robots or car-like robots). Planning

for such robots is therefore held in a (x, y, θ) state space. Furthermore, with the use of a

path-tracking algorithm or an optimization technique [49], it is possible to pre-compute actions

satisfying differential constraints that connect neighboring states [50, 18]. Due to a state’s

regularity, motion primitives generated for some characteristic configurations, as shown in

Figure 3.6, can be duplicated for all other states of a state space. This technique was originally

proposed in [50], and is referred to as a state-lattice search.

3.2 Motion Planning as a State-space Search

A set of states S and a set of applicable actions A can be represented as a directed graph

G = (V,E), assuming that a direct state-to-node s ∈ S → v ∈ V and action-to-edge

29

-11-10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 1011
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10
11

-11-10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 1011
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10
11

a) b)

-11-10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 1011
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10
11

-11-10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 1011
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10
11

c) d)

Figure 3.6: Motion primitives generated using the optimization technique described in [49]
and implemented in [51] for (a) θ = 0◦, (b) θ = 22.5◦, (c) θ = 45◦, (d) all θ in
{0◦, 22.5◦, . . . , 337.5◦}. The center of rotation of the robot is situated at (0, 0) point.

a ∈ A → e ∈ E mapping exist. (Therefore, throughout this thesis, the terms state and node,

and action and edge are used interchangeably.) Additionally, if a cost function is defined for

each action, cost(as,s′) ≡ cost(s, s′) : A → R+, that is used as an edge weight, the graph is

weighted. A path from s1 to sn is a sequence of states, such that an action asi,si+1
∈ A must

exist for each pair of consecutive states 〈si, si+1〉 asi,si+1
∈ A must exist.

A path search can be conducted from the starting node (forward search), and from the

goal node (backward search), which requires the introduction of the following definitions. A

30

transition function γ(as,s′) : S × A → S returns the state s′ achieved by execution of action

as,s′ . An inverse transition function γ−1(as′,s) : S×A→ S returns the state s′ from which state

s can be achieved. With the transition function, we can define a set of successors Succ(s) =

{s′ ∈ S|s′ = γ(as,s′)} and a set of predecessors Pred(s) = {s′ ∈ S|s′ = γ−1(as′,s)} (Fig. 3.7).

s
sb

sa

Succ(s)Pred(s)

asa,s

as,sb

sc

asc,s
as,sc

Figure 3.7: State s with successors Succ(s) and predecessors Pred(s) connected by actions,
which can be represented as a directed graph.

With the implementation of graph-searching algorithms, nodes hold additional information,

such as the following:

• parent(s), a neighboring node that leads to the start state (or goal state, in the case of a

backward search),

• g(s), a value that represents the cost from the starting node to s (or the cost from

the goal node to s, in the case of a backward search), calculated as follows g(s) =

g(parent(s)) + cost(parent(s), s). In the case in which the state s can be omitted, this

value is referred to as the g value.

In many path-searching algorithms, common elements can be recognized. In [25] (cf. p.

33) and [52], one can find two generalized (abstract) algorithms depicting common steps of

different searching methods. The former algorithm is more suited to typical graph searching,

while the latter derives from general action planning problems.

A pseudocode of such a generalized forward search in a state space is shown in

Algorithm 3.1. This algorithm has typical elements, such as a list of states to expand (open_list)

and a list of states that are already visited (indicated by visited(s)). A forward search

commences a search from a start state that has the g value initialized with 0, or in general,

the lowest cost (lines 5–6 in Alg. 3.1). The search loop is running until a solution is found

(line 11 in Alg. 3.1) or there are no more states to expand (i.e., the open list is empty; line 8

in Alg. 3.1). A state expansion (lines 13–18 in Alg. 3.1) involves visiting all successor states.

During an expansion, the g(s′) value of a successor state is set to g(s′) = cost(s, s′) + g(s),

either when s′ is not visited or a new g(s′) value is lower than the previous. Whenever a new

31

g(s′) value is set to a state, a parent(s′) is also set to s, pointing to the state upon which g(s′)

was set. It is essential that each state has only one parent state, with the exception of a start state,

which is the only state that does not have a parent. As a forward-search algorithm visits new

states, it builds a search tree rooted at the start state, in which the parents are the tree branches.

As the FORWARD-SEARCH procedure finishes, a plan can be obtained with the procedure

GETPLAN. This procedure retrieves the plan by backtracking from the goal state to the initial

state. While backtracking, each preceding action is inserted at the beginning of the plan Π.

With few modifications, the FORWARD-SEARCH (Alg. 3.1) can be easily modified into the

BACKWARD-SEARCH algorithm shown in Algorithm 3.2, in which modifications with respect

to the FORWARD-SEARCH are marked with (*). The most important change is made in line

13 of the algorithm. In the backward search version, instead of selecting all successor states

(i.e., Succ(s)), the algorithm must select all states that precede a given state (i.e., Pred(s)). A

search-direction change imposes modifications in the GETPLAN procedure, where the plan is

retrieved starting from the initial state. Thus, each successor is appended to the constructed plan

Π.

The discussed algorithms (Alg. 3.1 and Alg. 3.2) expand all successors (predecessors) and

add them to open_list until it finds a goal; thus, both algorithms perform an exhaustive search

[52]. Moreover, for a finite graph, the algorithms are complete (i.e., they return a solution,

if any exists, or return failure). Other properties of the algorithms depend on a particular

implementation of an open_list. For example, if open_list is implemented as a first-in-first-out

(FIFO) queue, the presented algorithms work in a breadth-first search (BFS) manner.

Depending on the implementation of the KEY function, if an open_list is a heap, then

two remarkable algorithms can be obtained, namely, the algorithm developed by Dijkstra [53]

and A* developed by Hart, Nilsson, and Raphael [2]. With the function KEY(s) = g(s), the

algorithms Alg. 3.1 and Alg. 3.2 are implementations of Dijkstra’s algorithm, who showed that,

if graph nodes are expanded in ascending order of g-value, then g-values of all expanded nodes

will be minimal, and they will be the costs of the shortest paths to these nodes, providing an

optimal solution.

An observation made by Hart et al. [2] that a search can be significantly sped-up by the

use of the KEY(s) = g(s) + h(s, sgoal) (or KEY(s) = g(s) + h(s, sstart) in case of a backward

search), where h(s, sgoal) is called a heuristic function, was fundamental for a wide range of

algorithms based on A* that are the subject of a heuristic search, an important branch of AI

[54]. Furthermore, Hart et al. showed that, if a heuristic h(s, sgoal) returns a cost that is not

greater than the true cost to the goal, then the A* algorithm provides an optimal solution, and

such a heuristic is said to be admissible. The all new algorithms proposed in this thesis are

based on a heuristic search.

32

Algorithm 3.1 Forward search.
1: function FORWARD-SEARCH(sstart, sgoal)
2: for each state s ∈ S do
3: visited(s) = false
4: parent(s) = NULL

5: visited(sstart) = true
6: g(sstart) = 0
7: PUSH(open_list, KEY(sstart))
8: while NOT EMPTY(open_list) do
9: s = TOP(open_list)

10: POP(open_list)
11: if SOLUTIONFOUND(s) then
12: return success
13: for all s′ ∈ Succ(s) do
14: if NOT visited(s′) OR
15: g(s′) > cost(s, s′) + g(s) then
16: parent(s′) = s
17: g(s′) = cost(s, s′) + g(s)
18: if NOT visited(s′) then
19: visited(s′) = true

20: PUSH(open_list, KEY(s′))
21: return failure
22: function GETPLAN(sgoal)
23: Π = 〈〉
24: s = sgoal
25: while s 6= NULL do
26: Π = 〈s,Π〉
27: s = parent(s)

28: return Π

Algorithm 3.2 Backward search.
1: function BACKWARD-SEARCH(sstart, sgoal)
2: for each state s ∈ S do
3: visited(s) = false
4: parent(s) = NULL

5: visited(sgoal) = true . *a

6: g(sgoal) = 0 . *
7: PUSH(open_list, KEY(sgoal)) . *
8: while NOT EMPTY(open_list) do
9: s = TOP(open_list)

10: POP(open_list)
11: if SOLUTIONFOUND(s) then
12: return success
13: for all s′ ∈ Pred(s) do . *
14: if NOT visited(s′) OR
15: g(s′) > cost(s′, s) + g(s) then
16: parent(s′) = s
17: g(s′) = cost(s′, s) + g(s)
18: if NOT visited(s′) then
19: visited(s′) = true

20: PUSH(open_list, KEY(s′))
21: return failure
22: function GETPLAN(sstart)
23: Π = 〈〉
24: s = sstart
25: while s 6= NULL do
26: Π = 〈Π, s〉 . *
27: s = parent(s)

28: return Π

a* — line modified with respect to a forward search.

3.3 Sampling-based Motion Planning

Sampling-based motion planning refers to methods that explore continuous configuration space

by picking configurations at random. To ensure probabilistic completeness, such algorithms

try to evenly cover a configuration space with probes. A number of sampling-based algorithms

have been developed over the decades (for a survey refer to [25, 55]). Herein, two recognizable

algorithms will be discussed, namely, probabilistic roadmaps (PRM) [43] and RRT [47]. The

former algorithm is an example of a multiple-query planning algorithm, as a roadmap spanned

by the algorithm can be reused for a new query, while the latter is a single-query planning

algorithm, as a search tree is rooted in the current state (which is necessary for kinodynamic

planning).

33

3.3.1 Probabilistic Roadmaps

A PRM [43] consists of two phases: a learning phase (a preprocessing phase) that aims to

build a roadmap and a query phase that finds a path in the roadmap for given start and goal

configurations. As PRM is a multiple-query algorithm, typically, a roadmap is an undirected

graph that is easy to use for solving different problems.

The CONSTRUCTROADMAP procedure (Alg. 3.3, adapted from [43]) is the main procedure

in the learning phase, whereG = (V,E) is an undirected graph, V is a set of graph nodes, andE

is a set of graph edges. This procedure incrementally adds random, collision-free configuration

qrand to the graphG, until the time reserved for these steps elapses. At this step, it is important to

ensure uniform distribution of sample configurations (line 5). For a selected configuration qrand,

a set of neighboring nodes N from V is selected (line 6). In the next step, set N is sorted by an

increasing distance from qrand, which is not obligatory; however, it is likely that this operation

reduces the computation time (in particular the time used by the CONNECT procedure) and helps

to construct a compact graph. Each neighbor configuration qn is then examined for being in the

same component as qrand, which prevents cycles in the graph (a roadmap is a forest then). This

requirement can also be omitted.

Algorithm 3.3 Roadmap construction.
1: function CONSTRUCTROADMAP
2: V = ∅
3: E = ∅
4: while NOT construction time elapsed do
5: qrand = PICKATRANDOM(Cfree)
6: N = GETNEIGHBOURHOOD(qrand, V)
7: N = SORTBYINCREASINGDISTANCE(N, qrand)
8: V = V ∪ qrand
9: for each configuration qn ∈ N do

10: if NOT SAMECOMPONENT(qrand, qn, G) AND CONNECT(qrand, qn) then
11: E = E ∪ edge(qrand, qn)

Finally, if a collision-free path between qrand and qn exists, which is reported by the

CONNECT procedure, a new edge (qrand, qn) is added to the graph. As the construction of a

path between qrand and qn is a planning problem of itself, the CONNECT procedure is often

called a local motion planner; however, it is much simpler than local motion planners used

for real-time local collision avoidance. It is desirable to provide a fast and deterministic local

planner (i.e., planner that provides the same solution each time). This way it is sufficient to

memorize only graph nodes and edges and to calculate configurations that lie along graph edges

when necessary. In practice, for holonomic robots (e.g., omnidirectional mobile robots), a local

planner can simply provide a line segment in a C-space.

34

In the original PRM [43], the learning phase splits into the construction step (Alg. 3.3)

and the expansion step. The objective of the expansion step is to add more samples in the

neighborhood of nodes lying in regions that are difficult (for example, a narrow passage). The

“difficulty” of a region is reflected by the weight w(c) (where c is a configuration). In this step,

nodes are selected with a probability of w(c). A selected node is expanded by a random-bounce

walk in a short range (i.e., for a given configuration a robot follows a direction picked at random

and repeats this behavior whenever it hits an obstacle). The end point of such a walk is checked

for possible connections with other components of the graph, which is a desirable effect of the

expansion step. Small components are removed from the graph, which ends the learning phase.

The learning phase does not consider a start qstart and goal qgoal configuration. Therefore,

at the beginning of the query phase, qstart and qgoal are examined for connection with graph

components. If both configurations can be added to the same component, the shortest-path

search can be used to construct a path. Otherwise, a failure is reported.

3.3.2 Rapidly Exploring Random Tree

In contrast to PRM, the RRT algorithm [47] requires start and goal configurations (or states)

to be known from the beginning. This is because RRT begins a search-tree construction from

the start configuration and gradually adds new configurations that can be picked at random or

belong to a deterministic sequence [25, Ch. 5]. A basic idea for a search-tree construction

utilized by RRT algorithm is shown in Algorithm 3.4 (adapted from [25, Ch. 5]). The search

Algorithm 3.4 RRT construction.
1: function RRTCONSTRUCT(qstart,K)
2: V = qstart
3: E = ∅
4: for i = 1 to K do
5: qrand = PICKATRANDOM(Cfree)
6: qnear = NEAREST(qrand, T)
7: qc = CONNECT(qnear, qrand)
8: if qc 6= qnear then
9: V = V ∪ qc

10: E = E ∪ edge(qnear, qc)

tree is initialized with a start configuration qstart (line 2). For an arbitrarily chosen number of

steps K, the following steps are conducted. For a new configuration that is picked at random

(line 5), the nearest configuration qnear that lies on the search tree is found (line 6). The

nearest-configuration search is not restricted to tree nodes V ; it may also be any configuration

at the edges of the tree, denoted as T . Then, the algorithm examines the connection between

qnear and qrand. If there is no collision-free connection, the CONNECT procedure returns the last

35

point that belongs to Cfree (line 7). If this point is not already in s, it is added to the tree with

(qnear, qc) edge (lines 8–10).

Originally, RRT was designed to perform motion planning for a robot with non-holonomic

constraints, including dynamic constraints (i.e., kinodynamic planning) [47, 56]. A full

RRT for kinodynamic planning is shown in Algorithm 3.5 (adapted from [25, Ch. 5]). To

Algorithm 3.5 Kinodynamic RRT.
1: function KINODYNAMICRRT(sstart, sgoal,K,∆t)
2: V = sstart
3: E = ∅
4: for i = 1 to K do
5: srand = PICKATRANDOM(Sfree)
6: snear = NEAREST(srand, T)
7: (snew, unew) = SELECTCONTROL(snear, srand,∆t)
8: if snew /∈ Sobs then
9: V = V ∪ snew

10: E = E ∪ edge(snear, snew, unew)
11: if ‖snew − sgoal‖ < ε then
12: return success

perform kinodynamic planning, the KINODYNAMICRRT has few modifications regarding

RRTCONSTRUCT (Alg. 3.4). First, planning is held in a state space S. Second, state snew,

which is finally added to the search tree, is obtained by an application of a control input unew
(e.g., a left and right wheel speed for a differential-drive robot) for an arbitrarily chosen time

period ∆t, which ensures that the tree consists of feasible motion segments only. Furthermore,

for a robot with non-holonomic constraints, it is difficult to provide such a SELECTCONTROL

procedure that would guarantee that srand will be achieved in ∆t; thus, the algorithm reports

success when it finds a state near the goal state (line 10). Finally, the edges of the constructed

tree, in addition to the end node snew, have to memorize an associated control input unew.

Although, it is almost impossible to achieve snew = srand, it is crucial to pick srand with

a probability of 1 from a random sequence that is dense (i.e., a state space will be uniformly

covered by samples), which is necessary to make such an algorithm probabilistically complete.

In contrast, a simple approach that selects random control inputs rather than random states will

generate many samples near sstart and will poorly cover the rest of the state space.

A very important observation on the completeness of kinodynamic RRT planning has been

made in [57], which is that kinodynamic RRT-like algorithms with fixed time step and best-input

extension are not probabilistically complete.

36

3.4 Other Motion Planning Methods

To this point, the two most popular motion planning methods, search-based and sampling-based

methods, have been discussed, both aiming to perform complete global planning, at least

probabilistically. There are also methods that are not complete (i.e., they can get stuck at a

local minimum; yet, they are very quick and suitable for local collision avoidance).

One such method is the potential field method that assumes the existence of repulsive and

attractive forces that influence robot motion [58]. A sum of these forces (U(q) in Eq. 3.2) results

in a vector field with a gradient (~F (q) in Eq. 3.2) that forces a robot to move in the goal direction

(attractive force), while avoiding obstacles (repulsive forces).

U(q) = Urep(q) + Uattr(q)

~F (q) = −~∇U(q)
(3.2)

The potential field method with an attractive force based on the Euclidean distance to the goal

can get stuck in local minima. This issue has been overcome with the use of the NF1 navigation

function that is constructed as a backward search from a goal state. In fact, the calculation of

NF1 is merely a global grid-based search. Moreover, a potential field generated by repulsive

forces can be easily incorporated into a lattice-based search as vertices with inflated action costs,

which is a common practice [18, 48]. The inflation of an action cost in the vicinity of obstacles

allows achieving maximum-clearance path planning, similarly to the Voronoi diagram; hence,

such a potential field is called a Voronoi field [48].

To deal with changes in an environment, global path planning methods are typically

supported by local collision avoidance algorithms. Most local collision avoidance algorithms

calculate the best control input (e.g., velocity) that assures feasible collision-free motion for

a certain time period. For example, a vector-field histogram (VFH) [30] calculates the best

motion direction and adjusts the rotational velocity.

The dynamic window approach (DWA) [31], another collision avoidance algorithm, selects

the best longitudinal v and rotational ω velocities across velocities that are applicable at a current

state (i.e., current velocities and allowed accelerations are considered, which limits the v, ω

velocity space to a rectangular window). In this method, input velocities are calculated with

a multivariate objective function optimization, in which the following navigation function is

maximized [19]:

nf(~q,~v,~a) = α · nf1(~q,~v) + β · vel(~v) + γ · goal(~q,~v,~a) + δ ·∆nf1(~q,~v,~a), (3.3)

37

where α, β, γ, and δ are weights, ~q,~v, and ~a are the current position, velocity, and acceleration,

respectively, vel is a function rewarding maximal velocity, goal rewards progress toward a local

goal, nf1 rewards progress toward a global goal, and ∆nf1 rewards dynamics of progress

toward a global goal.

The aforementioned collision avoidance method aims to find new control input that is the

best with respect to a short time horizon, which makes the sub-optimality more pronounced.

This effect can be reduced by a local search in a (q, q̇) state space (state consisting of position

and velocity), that is limited to the vicinity of a global path. Such an approach is also used in

this thesis.

3.5 Conclusions

Basically, motion planning is a problem of finding a collision-free path in a configuration

space. If kinematic and dynamic constraints are considered, the problem is solved in a state

space which typically consists of configuration and velocity variables. Most motion planning

methods are based on either exhaustive lattice search or random sampling. While the advantages

of lattice-search methods are completeness and optimality (or bounded sub-optimality),

sampling-based methods are better for solving complex problems in high-dimensional spaces.

In the context of mobile robots, specifically differential-drive robots, motion planning as a

heuristic state-space search on a state lattice is the state of the art. Many real-world applications

were developed using this approach (e.g., autonomous car driving systems [18, 48]). Regarding

the subject of this thesis, that is, mobile robot motion planning among moving obstacles,

state-lattice heuristic search algorithms have been chosen for further analysis and usage.

38

4. D* Extra Lite: Incremental Planning

This chapter contains a description of the D* Extra Lite algorithm previously published in [13].

The D* Extra Lite algorithm is an optimal incremental search algorithm utilizing a search-tree

branch cutting technique, that allows quick reinitialization of parts of a search space that were

affected by changes in an environment. Thus, the knowledge from previous searches is reused

to speed up re-planning. The discussion of related incremental search algorithms can be found

in Section 4.1. A branch cutting technique is presented in Section 4.2. A pseudocode of D*

Extra Lite is presented in Section 4.3. A theoretical discussion of the properties of D* Extra

Lite is given in Section 4.4. Then, the algorithm is explained on a complex example (Sec. 4.5).

Finally, the benchmark results are presented (Sec. 4.6).

4.1 Incremental planning

Goal-directed navigation without accurate knowledge of the environment is a common problem

in robotics and video games. As an agent follows a path to a stationary goal, they may discover

changes within a certain range of sensors, which will require re-planning. Incremental heuristic

search algorithms are beneficial in this context; able to reuse knowledge from previous searches,

substantially less computation time is needed for re-planning.

Incremental shortest-path searching algorithms are typically used in a sense-plan-act

scheme (Alg. 4.1). During the planning phase a stationary snapshot of the environment is

used. Discrepancies between known-map and accurate-map relate to the appearance and

disappearance of obstacles. Although in both cases (appearance and disappearance) a previous

search can be reused, some techniques may be optimal in some cases and not in others.

The work of Stentz, who developed the D* [59] and Focussed D* [9] algorithms, and

that of Koenig and Likhachev, who developed D* Lite [10], are the most recognizable

contributions to-date to address the problem of incremental shortest-path planning. All three

of the above-mentioned algorithms run backwards, making them especially useful, as only the

start-state changes between search episodes, and the goal-state remain unchanged, therefore,

a significant part of the explored search-space remain relevant. The general aim behind these

algorithms is to repair only the nodes (map cells) in the affected part of the map, that is, unless

39

Algorithm 4.1 Procedures common for the D* Lite and D* Extra Lite algorithms.
1: function MAIN()
2: slast = sstart
3: MAPUPDATE()
4: INITIALIZE()
5: while sstart 6= sgoal do
6: if NOT SEARCH() then
7: return goal is not reachable
8: sstart =ACTIONSELECTION(sstart)
9: MAPUPDATE()

10: REINITIALIZE()
11: function SEARCH()
12: while open-list is not empty do
13: if SOLUTIONFOUND() then
14: return true
15: SEARCHSTEP()
16: return false
17: function ACTIONSELECTION(sstart)
18: return argmins′∈Succ(sstart)(cost(sstart, s

′) + g(s′))

the current state of the agent is achieved by the searching algorithm, in which case, preference

is to nodes that will lead to the current state of the agent.

Due to changes in the environment, a part of the search-space may become inconsistent.

While one part may include under-consistent nodes with underestimated g values (when new

obstacles appear), the other part may feature over-consistent nodes with overestimated g

values (when obstacles disappear). In case of underestimated g values, the nodes need to be

reinitialized. This allows the algorithm to assign new values, which will most likely be higher.

In the D*, Focussed D* and D* Lite, reinitialization occurs during the search. In order to detect

an inconsistent node, each node has an additional value, denoted as k value in Focussed D*, and

rhs value in D* Lite. Moreover, both algorithms utilize heuristic cost to the agent’s current state

in order to guide searching. In the searching phase, both algorithms perform the following two

operations for each underestimated node. Before the new g value is set, each underestimated

node is reinitialized. To assure that reinitialization precedes setting of the g value, the list of

open nodes must be sorted using a complex key value (i.e., min(rhs(s), g(s))).

A different approach is to reinitialize the affected portion of the map and then to conduct a

new search of only that part. As argued by Stentz [9], such an approach is “inefficient when the

robot is near the goal and the affected portions of the map have long ‘shadows’.” This approach,

i.e., reinitialization of the entire affected section of the search-space, can be found in the work

of Podsedkowski [60, 11], as well as in the Differential A* algorithm proposed by Trovato [61],

revisited and extended in [62]. Differential A* may be the most similar algorithm to the D*

Extra Lite presented in this paper. Unfortunately, research to-date has neglected to make an

experimental comparison of Differential A* with Focussed D* or D* Lite. However, with the

40

understanding gained from the work on the D* Extra Lite, also stated by Koenig [10], it can

be proposed that the reinitialization of the entire open-list before each search episode inhibits

efficient functionality of the Differential A* algorithm (recompute_OPEN() procedure in the

pseudocode presented by Trovato [62]).

In order to avoid re-computation of the entire open-list, Focussed D*, D* Lite and

D* Extra Lite use a biased key value. A biased key value, in addition to calculated cost g and

heuristic cost h, includes km value, which grows proportionally to the cost of agent’s transition

between each search episode. Accordingly, it is ensured that nodes that were pushed to the

open-list in the previous and subsequent episodes, will be popped in an order that will satisfy

optimality requirements without reordering of the entire open-list.

D*, Focussed D* and D* Lite each run backwards, from the goal to the current state

of the agent, which allows for the unaffected search-tree to be easily reused. However, it

should be noted that it is also possible for forward-search algorithms to reuse a previously

explored search-tree, e.g., LPA* [63] or Fringe-Saving A* [64]. Moreover, adaptive algorithms,

which do not reuse search-tree, are continuously running from scratch in a forward direction.

These algorithms improve their h values (they learn heuristics from previous searches), which

substantially accelerates subsequent search episodes. The basic algorithm for this type is

Adaptive A* [65]. Findings strongly suggest that AA* is quicker than repeated A*, and can

be faster then D* Lite, however only with the use of buckets in place of heap as a priority queue

for open-list managing.

In addition to algorithms using search-tree reuse and adaptive heuristic learning techniques,

there are algorithms based on AA* that make use of previously found paths, i.e., Path Adaptive

A* [66] and Multi-Path Adaptive A* (MPAA*) [67]. While these algorithms also run forward

from the starting state, they can terminate before achieving the goal node. As these algorithms

record previously constructed path(s), it is sufficient to construct the path that remains connected

with the goal node (it has not been disconnected through changes in the environment). The

most complex adaptive algorithm may be Tree Adaptive A* [68], which combines a reusable

tree (like D* or LPA* algorithms) with reusable paths, and accordingly, heuristic improving.

All adaptive algorithms mentioned above are limited to freespace assumption.

Consequently, although they can manage new obstacles, where there is a shortcut available,

their solutions fail to remain optimal. This problem has been solved with Generalized Adaptive

A* (GAA*) [69], which in the case of decrease to edge-cost, reestablishes the consistency of

h values by performing uninformed backward-search throughout the explored search-space.

The recent Multi-Path Generalized Adaptive A* (MPGAA*) [12] algorithm demonstrates the

benefits to be gained from the path reuse technique, by combining it with the GAA* algorithm.

41

It is worth noting that GAA* (and MPGAA*) is similar to the LSS-LRTA* [70].

LSS-LRTA* is a learning real-time algorithm that searches forwards and can be stopped

before it finds the global solution. The learning phase is a function equal to the consistency

reestablishing performed by GAA*. Without a computation time-limit, LSS-LRTA* undertakes

a global search, which makes it comparable to incremental planning algorithms. LSS-LRTA*

has been shown to outperform D* Lite in some settings, for a discussion, refer to [70].

4.2 Intuition

In most of incremental heuristic search algorithms, the first search episode is equivalent to the

regular A* algorithm, which expands consecutive search-space nodes until it reaches the goal

node. This can be in the case of a forward-search (e.g., LPA*, MPGAA*) or a backward-search

(e.g., D*, D* Lite). If the algorithm sets parent pointers (for example D* Lite does not), these

pointers form a tree with a root in the node from which the search originated; this tree is referred

to as the search-tree.

If any change is observed to affect the explored search-space, particularly, an edge-cost

e(s1, s2) has changed, a part of the visited search-space (a branch of the search-tree) has become

inconsistent and must be re-explored. The inconsistent part of a search-tree can be defined as

a branch of a search-tree that contains nodes supported by an edge e(s1, s2). A node s2 is

supported by an edge e(s1, s2) if the node s1 is a parent of node s2, furthermore, if a node s2 is

a parent of node s3 and s2 is supported by e(s1, s2), then s3 must also be supported by e(s1, s2).

The g values of nodes that belong to an inconsistent search-tree branch, are either too high or

too low. At that point, all incremental algorithms (such as D*, D* Lite, MPGAA*) distinguish

between two situations — when the cost of an edge has increased and when it has decreased.

If the root of the search-tree has not changed, such is the case of incremental search

algorithms running backwards (e.g., D* and D* Lite), following observations can be made.

In the situation in which the cost of an edge e(s1, s2) decreases, it is sufficient to reopen the

s1 node and continue search. This is owing to the fact that g values in the inconsistent part of

the search-tree are higher than should be (nodes are over-consistent). Optimal path-searching

algorithms change g value only if g(s2) > g(s1) + cost(s1, s2), which also functions to prevent

the algorithm from re-exploration of consistent nodes. Moreover, in this situation, the affected

branch of the search-tree cannot shrink (it can grow or stay unchanged). In Figure 4.1, an

example of edge-cost decrease is depicted. As cell C4 became free, the cost of corresponding

edges e(sC3, sC4), e(sB4, sC4) and e(sC5, sC4) decreased from infinity to one (Fig. 4.1a). As

42

1 2 3 4 5

A

B

C

D

E

1 2 3 4 5

A

B

C

D

E

1 2 3 4 5

A

B

C

D

E

a) b) c)

Figure 4.1: The agent (star), following the move from C1 to C2, observes cell C4 to become
free (chessboard) (a). Therefore, nodes sC3, sB4 and sC5 have to be re-opened (b). Figure (c)
illustrates search-space following re-planning. White inner shape — open nodes, gray inner
shape — closed nodes, arrows — parent node pointers, cross — goal node, black squares —
obstacles, dashed line — affected edges.

explained, there is no need to cut any branch, however, nodes sC3, sB4 and sC5 must be

re-opened (Fig. 4.1b)1.

If the cost of an edge e(s1, s2) increases, all nodes in the branch of the search-tree supported

by this edge become under-consistent, which means that its g values are lower than they should

be. As the condition g(s2) > g(s1) + cost(s1, s2) is not fulfilled, simple reopening of s1
will not lead the algorithm to re-establish consistency. Therefore, before the algorithm begins

new search, it must make such nodes over-consistent. This is achieved by setting its g values

to infinity or by marking them as unvisited. If the cost of the e(s1, s2) edge increases, the

affected search-tree branch may shrink or even — covered by other unaffected branches —

it may disappear. Thus, parent nodes of nodes that belong to the affected area may change

radically, as shown in Figure 4.2.

The main issue is to decide which nodes should be made over-consistent and which nodes

should be re-explored. The idea behind the D* Lite algorithm is to make over-consistent and to

re-explore only those nodes that lead towards the starting-node (i.e., current state of the agent).

For both operations (making node over-consistent and node re-exploration) the same open-list

is used. This is made possible by introduction of the rhs value for each node, which ensures

that nodes will be made over-consistent and re-explored in the correct order. An advantage of

this approach is that only necessary nodes are reinitialized and re-explored. A disadvantage of

D* Lite is that making some nodes inconsistent and reopening their neighbors is a part of a

search-loop that involves operations on the open-list, and this may hinder the efficiency of the

algorithm.
1In the example, in addition to nodes sC3, sB4 and sC5, a start node sC2 has been opened to properly handle

the termination condition, which is a property of the D* Extra Lite algorithm explained later.

43

1 2 3 4 5

A

B

C

D

E

1 2 3 4 5

A

B

C

D

E

1 2 3 4 5

A

B

C

D

E

a) b) c)

Figure 4.2: The agent (star), following the move fromC1 toC2, observes cellD4 to be occupied
(chessboard) (a). The entire branch supported by the edge e(sC4, sC5), must then be cut (b). As
the space left by the cut branch may be filled by another branch, nodes that neighbor the cut
branch are re-opened. A new optimal solution emerges that is on a different branch from the
initial branch (c).

As already discussed, following an increase in the edge e(s1, s2) cost, the entire affected

search-tree branch becomes inconsistent. The main idea behind the D* Extra Lite algorithm is

to cut the whole branch at once. This is unlike D* Lite, which while searching, reinitializes

single nodes. Branch cutting is a simple recursive operation that makes nodes unvisited without

employing the open-list. After the branch cut there will be a gap in the frontier fringe to be

repaired. Therefore, apart from reopening the s1 node, all nodes belonging to neighboring

branches will also need to be reopened. Only then is the search-space reinitialized and ready

for a new search episode.

4.3 D* Extra Lite Algorithm

D* Extra Lite, like other incremental algorithms, operates on procedures that utilize a

sense-plan-act scheme. The implementation of D* Extra Lite shares such basic procedures

with D* Lite (Alg. 4.1).

The algorithms start with an initial map update and a search-space initialization (lines 3–4

in Alg. 4.1). The main loop (lines 5–10 in Alg. 4.1) iteratively runs searching, action selection

and execution, map update and reinitialization. The SEARCH() procedure consists of another

loop that repeatedly performs SEARCHSTEP() while a goal condition has not been met, and

the open-list is not empty. The ACTIONSELECTION() procedure chooses the action (leading to

successive state) that will achieve the goal with the least cost. The REINITIALIZE() procedure

will instantly terminate if no change is observed.

44

Procedures that distinguish D* Lite from D* Extra Lite are shown in listings Alg. 4.22 and

Alg. 4.3, respectively, but even within these procedures, several elements are similar. In the

pseudocode, the following functions are also used:

• TOPOPEN(): returns the node with the lowest key in the open-list,

• POPOPEN(): removes the node with the lowest key in the open-list,

• PUSHOPEN(s, k): if node s is not open, it inserts s to the open-list with key k, if node s

is open, it updates the priority (if necessary),

• REMOVEOPEN(s): removes node s from the open-list,

• open(s): indicates if node s is in the open-list.

Algorithm 4.2 D* Lite (optimized version) procedures.
1: function CALCULATEKEY(s)
2: return [min(g(s), rhs(s)) + h(sstart, s) + km; min(g(s), rhs(s))]

3: function SOLUTIONFOUND()
4: return key(TOPOPEN()) >= CALCULATEKEY(sstart) AND rhs(sstart) <= g(sstart)

5: function INITIALIZE()
6: km = 0
7: for all s ∈ S do
8: g(s) = rhs(s) =∞
9: rhs(sgoal) = 0

10: PUSHOPEN(sgoal, CALCULATEKEY(sgoal))
11: function SEARCHSTEP()
12: s =TOPOPEN()
13: POPOPEN()
14: kold = key(s)
15: knew = CALCULATEKEY(s)
16: if kold < knew then
17: PUSHOPEN(s, CALCULATEKEY(s))
18: else if g(s) > rhs(s) then
19: g(s) = rhs(s)
20: REMOVEOPEN(s)
21: for all s′ ∈ Pred(s) do
22: if s′ 6= sgoal then
23: rhs(s′) = min(rhs(s′), cost(s′, s) + g(s))

24: UPDATEVERTEX(s′)
25: else
26: gold = g(s)
27: g(s) =∞
28: for all s′ ∈ Pred(s) ∪ s do
29: if rhs(s′) = cost(s′, s) + gold AND s′ 6= sgoal then
30: EVALUATERHS(s′)
31: UPDATEVERTEX(s′)

Both algorithms must operate while the agent’s start state changes between searching

episodes. In heuristic search algorithms, the key value to prioritizing an open-list is usually

2The pseudocode of D* Lite (optimized version) presented here is not an exact copy of the pseudocode
presented in [10], however, it is the same algorithm without any modifications.

45

32: function REINITIALIZE()
33: if any edge cost changed then
34: km = km + h(slast, sstart)
35: slast = sstart
36: for all directed edges (u, v) with changed cost do
37: cold = cost(u, v)
38: update edge cost cost(u, v)
39: if cold > cost(u, v) then
40: if u 6= sgoal then
41: rhs(u) = min(rhs(u), cost(u, v) + g(v))

42: else if rhs(u) = cold + g(v) then
43: if u 6= sgoal then
44: EVALUATERHS(u)
45: UPDATEVERTEX(u)
46: function UPDATEVERTEX(s)
47: if g(s) 6= rhs(s) then
48: PUSHOPEN(s, CALCULATEKEY(s))
49: else if g(s) = rhs(s) AND open(s) then
50: REMOVEOPEN(s)
51: function EVALUATERHS(s)
52: rhs(s) =∞
53: for all s′ ∈ Succ(s) do
54: rhs(s) = min (rhs(s), cost(s, s′) + g(s′))

calculated as a sum of an heuristic value h(sstart, s), which in the case of a backward-search

is the cost-to-start, and the g(s) value, is the cost-from-goal. Owing to an agent’s transitions

toward decreasing g values, h values should be recalculated. Recalculation of the key for each

open node, and reordering of an open-list, would hinder the efficiency of the search algorithm.

Therefore, another solution is used.

If the agent changes its state from the previous start state st0 to the new start state st1, than for

some nodes previously calculated h values are underestimated, while other are overestimated.

If the h value is underestimated, i.e., h(st0, s) < h(st1, s), the node will be removed from the

top of the open-list too early, thus its key has to be recalculated and the node has to be re-pushed

to the open-list (lines 14–17 in Alg. 4.2 and in Alg. 4.3). More serious is when the h value of

a node is overestimated, i.e., h(st0, s) > h(st1, s). In this case, the node might be removed

from the top of the open-list too late and the algorithm will not find the optimal solution. In the

worst case, the h value will be overestimated by h(st0, st1) (Fig. 4.3). To avoid overestimated

h values, a bias value km can be added to the heuristic calculated for nodes added after agent’s

transition (line 2 in Alg. 4.2 and in Alg. 4.3). If the km value is increased by h(st0, st1), all nodes

pushed to the open list before the agent’s transition will have been underestimated (or exactly)

h values, i.e., h(st0, s) ≤ h(st1, s) + km. The km value is increased at each reinitialization step

(line 34 in Alg. 4.2, line 30 in Alg. 4.3).

46

Algorithm 4.3 D* Extra Lite procedures.
1: function CALCULATEKEY(s)
2: return [g(s) + h(sstart, s) + km; g(s)]

3: function SOLUTIONFOUND()
4: return TOPOPEN() = sstart OR (visited(sstart) AND NOT open(sstart))

5: function INITIALIZE()
6: km = 0
7: visited(sgoal) = true
8: parent(sgoal) = NULL
9: g(sgoal) = 0

10: PUSHOPEN(sgoal, CALCULATEKEY(sgoal))
11: function SEARCHSTEP()
12: s =TOPOPEN()
13: POPOPEN()
14: kold = key(s)
15: knew = CALCULATEKEY(s)
16: if kold < knew then
17: PUSHOPEN(s, CALCULATEKEY(s))
18: else
19: for all s′ ∈ Pred(s) do
20: if NOT visited(s′) OR g(s′) > cost(s′, s) + g(s) then
21: parent(s′) = s
22: g(s′) = cost(s′, s) + g(s)
23: if NOT visited(s′) then
24: visited(s′) = true

25: PUSHOPEN(s′, CALCULATEKEY(s′))
26: function REINITIALIZE()
27: if any edge cost changed then
28: CUTBRANCHES()
29: if seeds 6= ∅ then
30: km = km + h(slast, sstart)
31: slast = sstart
32: for all s ∈ seeds do
33: if visited(s) AND NOT open(s) then
34: PUSHOPEN(s, CALCULATEKEY(s))
35: seeds = ∅
36: function CUTBRANCHES()
37: reopen_start = false
38: for all directed edges (u, v) with changed cost do
39: if visited(u) AND visited(v) then
40: cold = cost(u, v)
41: update edge cost cost(u, v)
42: if cold > cost(u, v) then
43: if g(sstart) > g(v) + cost(u, v) + h(sstart, u) then
44: reopen_start = true

45: seeds = seeds ∪ v
46: else if cold < cost(u, v) then
47: if parent(u) = v then
48: CUTBRANCH(u)
49: if reopen_start = true AND visited(sstart) then
50: seeds = seeds ∪ sstart

47

51: function CUTBRANCH(s)
52: visited(s) = false
53: parent(s) = NULL
54: REMOVEOPEN(s)
55: for all s′ ∈ Succ(s) do
56: if visited(s′) AND NOT parent(s′) = s then
57: seeds = seeds ∪ s′
58: for all s′ ∈ Pred(s) do
59: if visited(s′) AND parent(s′) = s then
60: CUTBRANCH(s′)

st0 sst1

h(st0,s)

h(st1,s)h(st0,st1)

c(st0,st1)

Figure 4.3: If the agent (star) moves from st0 to st1 then h value of node s will change. For
the s node, the previous h value was h(st0, s), however, following the agent’s transition, a
new h value should be h(st1, s). Assuming that for the heuristic function, triangle inequality
h(st0, st1) + h(st1, s) ≥ h(st0, s) holds, the worst case of overestimation of the h value for
node s, i.e., h(st0, s) − h(st1, s), will be equal to h(st0, st1), though, in general, traveled path
cost c(st0, st1) ≥ h(st0, st1). If, in the next search episode, the old h value is used for open-list
prioritizing, s node may be removed from the top of the open-list too late. White inner shape
— open nodes, gray inner shape — closed nodes.

Another common element of D* Lite and D* Extra Lite is that a key used for open-list

sorting is a pair of values: key(s) = [key1(s), key2(s)] (line 2 in Alg. 4.2 and in Alg. 4.3). As

both algorithms allow for the reopening of previously closed nodes, in the case of multiple nodes

with equal key1(s) values, the tie-breaking rule should be to favor nodes with lower key2(s),

which is g(s) in D* Extra Lite and min(rhs(s), g(s)) in D* Lite. This measure preserves

optimality.

Referring to the previous explanations, changes in the environment affect branches of the

search-tree. The affected branch must be re-explored with special attention given to the case of

edge cost increase. To re-explore such a branch, it must be reinitialized. D* Lite recognizes and

reinitializes affected nodes while searching. Such an approach requires the use of the rhs(s)

value, which can be understood as a pre-g(s) value (the g(s) takes rhs(s) value when s is

over-consistent; line 19 in Alg. 4.2). Comparing rhs(s) and g(s) values is a basic method for

recognizing affected nodes (specifically under-consistent).

48

In contrast to D* Lite, the D* Extra Lite algorithm always reinitializes the entire affected

under-consistent branch of a search-tree. As a consequence, at the beginning of searching, the

search-space has no under-consistent nodes, but over-consistent, consistent and unvisited nodes

only. Therefore, it is possible to keep the SEARCHSTEP() (Alg. 4.3) almost as simple as the A*

algorithm.

The REINITIALIZE() procedure (Alg. 4.3) is executed if the cost of any visited edge has

changed. Tree-cutting is the first step of reinitialization (CUTBRANCHES() in Alg. 4.3).

For each edge with changed cost, the CUTBRANCHES() procedure does one of two possible

operations. If the cost of the e(u, v) edge has decreased, the v node is added to the list of seeds

to be reopened later (lines 42, 45 in Alg. 4.3). If the cost of the e(u, v) edge has increased

and node v is the parent of node u, the branch is cut starting from u (lines 46–48 in Alg. 4.3).

The cutting operation is simple, marking nodes unvisited. The CUTBRANCH() procedure is the

recursive procedure which traverses throughout the branch, i.e., a next node to cut s′ has to be

such predecessor of a current node s, so the s is the parent of s′ (lines 58–60 in Alg. 4.3).

Each successor node s′, such that s 6= parent(s′) is placed in the list of seeds (lines 55–57

in Alg. 4.3). Although seeds are simply nodes to reopen, as they might be cut later, they

cannot be merely pushed to the open-list. Following the CUTBRANCHES() procedure, the

REINITIALIZE() procedure pushes to the open-list only these nodes from the seeds list that

remain visited and are not already open (lines 32–34 in Alg. 4.3). This operation repairs the

frontier-gap made by branch cutting.

D* Extra Lite succeeds if the start node is on the top of the open-list, such as in the A*

algorithm, or, if the start node has been closed in some previous searching episode and has not

been cut in the reinitialization.

In the case of edge-cost decrease, there may be a shorter path. Therefore, to preserve

optimality, the start node should be reopened. However, in not every case of edge-cost decrease

does the start node need to be reopened. Herein, another optimization of the algorithm is

possible. Assuming that h(sstart, u) is admissible, for decreased e(u, v) edge cost, the start

node sstart requires reopening only if g(sstart) > g(v) + cost(u, v) + h(sstart, u). Otherwise, it

is impossible for a path containing an e(u, v) edge to be shorter. This condition is checked and

applied in lines 42–44 and 49–50 of the Alg. 4.3. Such a situation is depicted in Figure 4.4 in

episode five.

49

4.4 Discussion of the Algorithm

In [71], it was proven that the use of a biased key value does not affect the optimality of the

D* Lite algorithm. As D* Extra Lite differs from D* Lite only in the reinitialization, the proof

presented by Koenig [71], to some extent, can also be adapted for D* Extra Lite.

Proof 4.1 For a nonnegative admissible heuristic h(u, v), heuristic search algorithms, such as

A*, D* Lite, and D* Extra Lite, provide an optimal solution if and only if they expand nodes

in non-decreasing order of the f value, which is calculated as f(s) = g(s) + h(sstart, s) in

the case of a backward search. Moreover, D* Lite and D* Extra Lite are able to reuse nodes

from previous searches. However, due to agent transitions, the start state sstart changes; thus,

the f value is different at each i-th time point. Hence, fi(s) = g(s) + h(sstart,i, s). To avoid

re-computation of the f value and reordering of the open list, D* Lite and D* Extra Lite use a

biased key, which is defined as follows:

keyi(s) = [fi(s) + km,i; g(s)], (4.1)

where km,i is increased with each i-th search episode (line 30 in Alg. 4.2) in accordance with

(4.2).

km,i+1 = km,i + h(sstart,i, sstart,i+1) (4.2)

To prove that the search algorithm using a key defined by 4.1 is optimal, we have to show

that, for each pair of nodes s and s′ for which fi(s) < fi(s
′) holds, node s′ will not be expanded

before s for any keyj(s) and keyk(s′), where j ≤ i and k ≤ i.

Case 1. For j ≤ k = i, we can prove that keyj(s) < keyk(s
′) = keyi(s

′). Starting from

assumption the fi(s) < fi(s
′), we have the following:

fi(s) + km,i < fi(s
′) + km,i.

From (4.2), we have the following:

km,i = km,j + h(sstart,j, sstart,j+1) + · · ·+ h(sstart,i−1, sstart,i)

= km,j + ∆km,j,i.

50

Thus,

fi(s) + km,j + ∆km,j,i < fi(s
′) + km,i

g(s) + h(s, sstart,i) + km,j + ∆km,j,i < g(s′) + h(s′, sstart,i) + km,i.

Since

h(s, sstart,j) ≤ h(s, sstart,i) + h(sstart,j, sstart,j+1) + · · ·+ h(sstart,i−1, sstart,i)

h(s, sstart,j) ≤ h(s, sstart,i) + ∆km,j,i,

we have the following:

g(s) + h(s, sstart,j) + km,j < g(s) + h(s, sstart,i) + km,j + ∆km,j,i.

Thus,

g(s) + h(s, sstart,j) + km,j < g(s′) + h(s′, sstart,i) + km,i

[g(s) + h(s, sstart,j) + km,j; g(s)] < [g(s′) + h(s′, sstart,i) + km,i; g(s′)]

keyj(s) < keyi(s
′).

Case 2. For any k < i, it may occur that keyj(s) > keyk(s
′); thus, node s′ will pop before

node s. However, if keyk,old(s′) < keyi,new(s′), node s′ is re-pushed to the open list with an

updated key without expansion. This is guaranteed by lines 14–17 in Algorithm 4.2. For the

updated keyi(s′), from Case 1, the relation keyj(s) < keyi(s
′) holds; thus, node s′ will not be

expanded before node s. �

D* Extra Lite is very similar to D* Lite, thus these algorithms have similar both time

and space complexity. For example, implementation using a binary heap has O(n log n)

time-complexity, where n is the number of expanded nodes. If there are only over-consistent or

uninitialized nodes, both algorithms are almost equivalent. In this case, for D* Lite, only lines

12–24 (Alg. 4.2) of the SEARCHSTEP() function are used, while the SEARCHSTEP() function

of the D* Extra Lite algorithm is designed for such a case exclusively. If edge costs decrease,

reinitialization is also similar for both algorithms — both reopen node that support a changed

edge, (lines 39–41 in Alg. 4.2 and lines 42–45 in Alg. 4.3).

The main difference between the D* Lite and the D* Extra Lite algorithm is in edge-cost

increase. D* Lite reinitializes and re-expands only those nodes that lead toward the agent’s

current state, while D* Extra Lite always reinitializes the entire under-consistent branch of the

51

search-tree. Therefore, herein, only the complexity of reinitialization is investigated. This is

done for the n-th searching episode. Let us consider a sufficiently large graph and an agent with

a finite observation range. Since the observation range is finite, the number of changed edges is

negligibly small. Therefore, the cost of operations in lines 32–45 (Alg. 4.2) of D* Lite and lines

36–46 (Alg. 4.3) of D* Extra Lite can also be neglected. The crucial operations are in lines

26–31 (Alg. 4.2, which are a part of the SEARCHSTEP() function) and 32–34, 48 and 51–60

(Alg. 4.3, are mainly CUTBRANCH() function).

Now, let us introduce the following numbers relevant to D* Extra Lite:

• nto_cut — number of under-consistent nodes to cut,

• nto_open — number of nodes to open in order to repair the frontier gap,

• nopen,DEL — number of nodes in the open-list,

• ntree — number of nodes in the search tree after the previous search episode,

such that nto_cut + nto_open ≤ ntree and nopen,DEL ≤ ntree. For D* Lite, the following numbers

can be defined:

• nto_reinit — number of nodes to be reinitialized for which key(s) ≤ key(sstart),

• nopen,DL — number of nodes in the open-list,

• never_visited — number of nodes visited,

such that nto_reinit ≤ never_visited − 1 and nopen,DL ≤ never_visited.

In some cases, all visited nodes must be reinitialized. For example, this could happen when,

after traversing a long corridor, right before reaching the goal, an agent encounters a dead-end

and must take a new path through a corridor that was not initially chosen.

Furthermore, at each n-th step of the agent, the ntree ≤ never_visited relation holds. As D*

Extra Lite instantly cuts all under-consistent branches, it is likely that ntree < never_visited.

The computation time of under-consistent nodes reinitialization for D* Lite and D*

Extra Lite is shown in equations (4.3) and (4.4), respectively. As expected, iterations over

changed edges have been omitted. Computation times of particular functions are marked as

c<function name>;<code lines>, where calculation times of the open-list operations, such as push, pop

and delete, may depend on the number of open elements. b is a domain-specific branching factor

(number of neighbors).

Treinit,DL ≈ nto_reinit · (cpop;13(nopen,DL) + cpush;31,48(nopen,DL)

+ ch;31,48 + cpreds;28 + b · ccost;29 + log b · (csuccs;30,53 + b · ccost;30,53)

+ log b · (cpush|del;31,48|50(nopen,DL) + ch;31,48))

(4.3)

52

Treinit,DEL ≈ nto_cut · (cdel;54(nopen,DEL) + cpreds;58 + csuccs;55)

+ nto_open · (cpush;34(nopen,DEL) + ch;34)
(4.4)

Now, let us consider the worst-case scenario, in which all nodes that have ever been visited

must be reinitialized. In such a case, D* Lite nto_reinit = never_visited − 1, and D* Extra Lite

nto_cut = never_visited − 1. Additionally, for D* Extra Lite, nto_open = 1, i.e., only the root

(the goal node) will be reopened. The worst-case computation times are represented below, by

equations (4.5) and (4.6).

Treinit,DL ≈ never_visited · (cpop;13(nopen,DL) + cpush;31,48(nopen,DL)

+ ch;32,48 + cpreds;28 + b · ccost;29 + log b · (csuccs;30,53 + b · ccost;30,53)

+ log b · (cpush|del;31,48|50(nopen,DL) + ch;31,48))

(4.5)

Treinit,DEL ≈ never_visited · (cdel;54(nopen,DEL) + cpreds;58 + csuccs;55) (4.6)

Although there exists no general relationship between nopen,DL and nopen,DEL, for both

algorithms, those numbers may be large; for example, while D* Lite removes only consistent

nodes, hence it may keep many inconsistent nodes from any of previous searches, D* Extra Lite,

due to branch cutting, may maintain a rugged frontier. However, for a sufficiently large graph,

it can be assumed that nopen,DL ≈ nopen,DEL ≈ nopen. Furthermore, assuming that an open-list

is implemented using a binary heap, the time of pushing, popping and deletion operations is

the same, namely cheap(nopen) ≈ log nopen. Equations (4.5) and (4.6) can be transformed as

follows.

Treinit,DL ≈ never_visited · ((2 + log b) · cheap(nopen)

+ (1 + log b) · ch + cpreds + log b · csuccs + b · (1 + log b) · ccost)
(4.7)

Treinit,DEL ≈ never_visited · (cheap(nopen) + cpreds + csuccs) (4.8)

From (4.7) and (4.8) it is clear that in the worst-case scenario, the following relation holds:

Treinit,DEL < Treinit,DL. Moreover, as reinitialization time (4.3) depends on branching factor b,

D* Lite is more domain sensitive than is D* Extra Lite.

In contrast, there exists a scenario that D* Lite could solve easily while D* Extra Lite

would struggle. Let us assume that there is only one under-consistent node for which key(s) <

key(sstart). In such a case nto_reinit = 1. D* Extra Lite would need to cut an entire branch and

reopen all nodes that are neighboring to this branch. For a sufficiently large graph, it is likely

that nto_cut + nto_open > nto_reinit, thus, from equations (4.3) and (4.4), Treinit,DEL > Treinit,DL.

Indeed, such a scenario is observable on random maps with low fill-ratio. However, these

53

random maps are artificial, and therefore specific with their salt-and-pepper-like changes. For

typical maps from video games as well as better structured maps of rooms, D* Extra Lite

remains quicker than both D* Lite and MPGAA*.

Further improvement of D* Extra Lite is possible for undirected graphs. For domains

such as presented here path-planning on a grid-map, in which Succ(s) ≡ Pred(s), the

CUTBRANCH() function can be simplified. This is demonstrated in Alg. 4.4.

Algorithm 4.4 CUTBRANCH() procedure of the D* Extra Lite algorithm for domains in which
Succ(s) ≡ Pred(s).

1: function CUTBRANCH(s)
2: visited(s) = false
3: parent(s) = NULL
4: REMOVEOPEN(s)
5: for all s′ ∈ Pred(s) do
6: if visited(s′) AND parent(s′) = s then
7: CUTBRANCH(s′)
8: else
9: seeds = seeds ∪ s′

In the author’s opinion, in addition to superior reinitialization-time, D* Extra Lite is easier

to implement and more reliable than D* Lite. For example, while to ascertain if a node is a

parent of another node, D* Extra Lite relies on topological relations only, (i.e., parent(s); lines

47, 56 and 59 in Alg. 4.3), D* Lite uses rhs(s) = cost(s, s′) + g(s′) comparison (lines 29, 42

in Alg. 4.2). Comparison in the case of a cost expressed with real numbers, is an error-prone

operation for computers. If, due to numerical issues, an admissibility of a heuristic is broken, D*

Lite may produce local minima. This would make it impossible to reconstruct path. MPGAA*,

another algorithm implemented and used in the benchmark, is also vulnerable to numerical

errors; numerical issues may affect output of the GOALCONDITION() function, which would

lead the algorithm to run unnecessary search steps.

4.5 Example

In this example, a grid-world domain is used. An agent can move in cardinal directions only.

The cost of motion between two unoccupied neighboring cells is one. An occupied cell is

treated as regular cell, however, the cost of entering or leaving such a cell is infinite. The

heuristic function uses Manhattan distance.

D* Extra Lite in action is presented in Figure 4.4. Each sub-figure depicts the complete

state of a search-space. Consecutive episodes are organized in rows. Each episode begins with

the initialization/reinitialization of a search-space, after which searching commences. When a

solution is found, an agent follows decreasing g values leading towards the goal. After each

54

step, observation is performed. Any change observed in the explored search-space ends the

current episode and starts a new episode from reinitialization.

In Figure 4.4, each visited grid cell (i.e., visited node) has been assigned four values, which

are the h value in the bottom-left, the g value in the top-left, the f value in the top-right, and the

km value in the bottom-right. The f = h+g+km value is the first part of a key value calculated

in line 2 in Alg. 4.3. Closed nodes have gray-filled inner shape. Nodes with a white-filled inner

shape remain on the open-list. An arrow between nodes always points to the parent node.

Episode 1 commences with initialization. In Figure 4.4 the goal cell is marked with a cross

sign. Initially, the goal node has h = 3, g = 0, f = 3. The km value is set to 0. The current state

of an agent is depicted with a star sign. The second sub-figure in the row in Figure 4.4 depicts

the state of the search-space after searching. If the start node is visited and it is on the top of

the open-list or has already been closed in a previous search episode, the searching algorithm

succeeds (line 4 in Alg. 4.3). After searching, the agent follows decreasing g values, until it

notices any change in the environment. In Episode 1, after two steps of the agent, the cell C3

changed its state to occupied. The affected search-tree branch is indicated with a dashed line

(the third sub-figure of Episode 1 in Figure 4.4). Observation of this change ends Episode 1.

Episode 2 commences with reinitialization. Due to change in the C3 cell, the costs of edges

e(sC3, sB3), e(sC2, sC3) and e(sD3, sC3) have increased. Consequently, nodes supported by

these edges became under-consistent (theirs g values are lower than they should be). In this

case, the reinitialization procedure will cut the entire affected branch (lines 46–48 in Alg. 4.3).

As no particular order is required, cutting may start from any of the C2, D3 or C3 nodes. If the

cutting procedure starts from node C2, the branches supported by D3 or C3 will be cut later.

During branch cutting, neighboring nodes are pushed to the list of seeds (line 57 in Alg. 4.3,

or line 9 in Alg. 4.4 for undirected graph). According to the CUTBRANCHES() procedure, the

seeds contains a number of nodes of which only a select few remain visited. Node that are

not yet on the open-list are reopened (lines 32–34 in Alg. 4.3). Following the reinitialization

that began Episode 2, nodes B2 and B3 have been reopened. During the reinitialization, a km
has been increased by h(sE2, sD3) = 2 (line 30 in Alg. 4.3). Episode 2 ends after the change

observed in cell D4.

In the reinitialization at the beginning of Episode 3, the km is increased by h(sD3, sC2) = 2.

The node corresponding to the cell D5 is reopened (lines 45, 32–34 in Alg. 4.3). The values

of the D2 node has been set to h = 4, g = 1, km = 3 which results in f = 8. As the

g(sstart) > g(sD5) + cost(sD4, sD5) + h(sstart, sD4), the start node must be reopened (lines

43–44, 49–50 in Alg. 4.3).

Episode 3 ends with observation of cellB1 becoming occupied. At the beginning of Episode

4, the affected branch is cut. However, the node corresponding to the agent’s state is closed

55

1 2 3 4 5

A

B

C

D

E

g

h

f

0

1

2

34

456

5

6

6

7

78

89

9

3

3

4

5

6

76

54

5

3

32

21

10

2

5

7

9

11

9

11

9

11

9

99

99

99

11

4

3

7

8

11

11
visited, open

visited, closed
g f

h

not visited,
free space

start

goal

obstacle
0

0

0

0

00

0

0

0

0

0

00

0

0

00

0

0

1 2 3 4 5

A

B

C

D

E
0

1

2

34

456

56

3

3

4

5

6

76

52

5

3

5

7

9

11

9

11

9

11

11

4

7 11

0

0

0

0

00

02

0

20

1 2 3 4 5

A

B

C

D

E
0

1

2

34

456

56

3

3

4

5

6

54

52

3

3

5

7

9

11

9

11

9

11

11

4

7 13

0

0

0

0

22

02

2

22

km

km

2

2 2

2 2

4

7 13

3

8 13

2

7 11

1

8 11

2 2

9 13

0

9 11

2 2

9 13

1 2 3 4 5

A

B

C

D

E
0

1

2

34

456

56

3

3

4

5

6

54

52

3

3

5

7

9

11

9

11

9

11

11

4

7 13

0

0

0

0

22

02

2

22

2

2 2

2 2

4

7 13

3

8 13

2

7 11

1

8 11

2 2

9 13

0

9 11

2 2

9 13

1 2 3 4 5

A

B

C

D

E
0

1

2

34

456

56

3

3

4

5

6

54

52

5

3

9

7

9

11

9

11

9

11

11

4

7 13

0

4

0

0

22

02

0

22

24

7 13

1 2 3 4 5

A

B

C

D

E
0

1

2

34

456

56

3

3

4

5

6

54

52

5

3

9

7

9

11

9

11

9

11

11

4

7 13

0

4

0

0

22

02

0

22

24

7 13

3 4

2 9

2 4

3 9

3 4

4 11

4

4

42

11

1

4 9

5

0

5 9

42

5 11

1 2 3 4 5

A

B

C

D

E
0

1

2

34

456

56

7

78

89

9

3

3

4

5

6

76

54

5

3

2

21

10

2

5

7

9

11

9

11

9

11

9

9

99

99

11

4

3

7

8

11

11

0

0

0

0

00

00

0

00

00

000

00

7 11

4 0

7 11

4 0

3 0

inf inf

Initialization /
Reinitialization

Searching
Execution and
Observation

1 2 3 4 5

A

B

C

D

E
0

3

3

0

km = 0

Episode 1

km = 2

Episode 2

km = 4

Episode 3

km = 5

Episode 4

km = 6

Episode 5

No need
for searching

8 13

3 2

9 13

2 2

9 13

2 2

7 11

2 2

9 11

0 2

8 11

1 2

8 13

3 2

uv

u is a parent of v
(u supports v)

uv

affected branch
(dashed line)

inf inf

3 0

7 11

4 0

No need
for searching

A

B

C

D

E

1 2 3 4 5

0

1

2

34

456

56

3

3

4

5

6

54

52

5

3

9

7

9

11

9

11

9

11

11

4

7 13

0

4

0

0

22

02

0

22

24

7 13

3 4

2 9

2 4

3 9

3 4

4 11

4

4

42

11

1

4 9

5

0

5 9

42

5 11

8 13

3 2

1 2 3 4 5

0

1

2

34

456

56

3

3

4

5

6

54

52

5

2

9

7

9

11

9

11

9

11

13

4

7 13

0

4

0

0

22

02

0

52

24

7 13

3 4

2 9

2 4

3 9

3 4

4 11

4

4

42

11

1

4 9

5

0

5 9

42

5 11

8 13

3 2

A

B

C

D

E

A

B

C

D

E

1 2 3 4 5

0

1

2

34

456

56

3

3

4

5

6

54

52

5

2

9

7

9

11

9

11

9

11

13

4

7 13

0

4

0

0

22

02

0

52

24

7 13

3 4

2 9

2 4

3 9

3 4

4 11

4

4

42

11

1

4 9

5

0

5 9

42

5 11

8 13

3 2

A

B

C

D

E
2

inf inf

0

1 2 3 4 5

0

1

2

34

456

56

3

9

4

5

6

54

52

5

2

9

7

9

11

9

11

9

11

13

4

7 13

6

4

0

0

22

02

0

52

24

7 13

3 4

2 9

2 4

3 9

3 4

4 11

4

4

42

11

1

4 9

5

0

5 9

42

5 11

8 13

3 2

2

inf inf

0

1 2 3 4 5

0

1

2

34

456

56

3

9

4

5

6

54

52

5

2

9

7

9

11

9

11

9

11

13

4

7 13

6

4

0

0

22

02

0

52

24

7 13

3 4

2 9

2 4

3 9

3 4

4 11

4

4

42

11

1

4 9

5

0

5 9

42

5 11

8 13

3 2

2

inf inf

0

A

B

C

D

E

Figure 4.4: D* Extra Lite example in action; white inner shape — open nodes, gray inner shape
— closed nodes.

56

and unaffected, therefore the success condition is realized (line 4 in Alg. 4.3) and no further

searching is required.

Following transition from D2 to D3, the agent observes that the cost of the e(sE4, sE5) edge

has decreased, which ends the Episode 4. However, there is no need for further searching. This

is because g(sstart) = g(sE5) + cost(sE4, sE5) + h(sstart, sE4), and no shorter path can exist

(no need to reopen the start node, which is checked in line 43 in Alg. 4.3).

4.6 Benchmark results

In the experiments the following three algorithms: D* Lite (optimized version) [10], MPGAA*

[12] and D* Extra Lite were compared. These experiments were run on an Intel(R) Core(TM)

i7-3520M CPU @ 2.90GHz machine, with 8GB of RAM, running 64-Bit Linux.

All three algorithms have been implemented in C++ within the same programming

framework3 and compiled using gcc (4.8.4) compiler with o3 level of optimization.

This framework, in addition to the algorithms, provides a heap implementation. Heap

implementation realizes lazy node removal and update, i.e., the REMOVEOPEN() function

(line 50 in Alg. 4.2, and line 54 in Alg. 4.3) marks only the node(s) to be removed.

Actual node removal takes place when the marked node is on the top of the open list.

The following domain-specific functions for 2D grid-based path planning are also provided:

benchmark maps and problem-loading, cost and heuristic functions (both use Euclidean

distance represented with integer numbers multiplied by factor of 1000), a neighborhood

selection function (eight-neighbor grid) and the MAPUPDATE() function, which simulates 360◦

rangefinder working with a resolution of 1◦ at a specific observation range. For that reason,

simple ray tracing is used. (If a laser beam encounters an obstacle, ray tracing for that beam

is stopped.) For each algorithm tested within the framework, the graph representing the entire

search-space (equal to the size of the map) is allocated at the beginning.

Every benchmark problem has been solved in accordance with the main function presented

in Alg. 4.1, that is, the map is updated after each step of an agent. If any change observed

in the map affects the shortest path, reinitialization and a consecutive search are performed,

though such necessity is checked by each algorithm in a different way. While the main

function is running, a number of parameters are logged, these are: search function running time,

reinitialization running time, search steps count, an open-list operations count, predecessor

list query count, successor list query count, and traveled path cost. The total running time is

3 Source code is available at https://bitbucket.org/maciej_przybylski/heuristic_
search

57

a) b) c) d) e)

Figure 4.5: Sample maps from the Sturtevant’s [72] benchmark: a) a portion of a random map,
b) a portion of a rooms map, c) wc3 (World of Warcraft 3), d) sc (Starcraft), e) maze.

simply the sum of the search and reinitialization function running time, thus it does not include

map-update time.

These algorithms have been tested within the following two settings: planning with

freespace assumption (setting 1), in which obstacles are only added, and planning on maps

with shortcuts and barriers (setting 2), in which obstacles may appear or disappear.

In the experiments, maps and problems from the benchmark prepared by Sturtevant [72]

have been used. This benchmark provides a number of maps and randomly generated problems

for 2D grid-based path planning, of which the following map-sets were used: random_10,

artificially generated maps with a fill-ratio of 10% (Fig. 4.5a); rooms, artificially generated

maps consisting of square rooms of different size (8–64 pixels) with narrow — of a single pixel

size — passages in walls (Fig. 4.5b); wc3, maps from the World of Warcraft 3 video game

(Fig. 4.5c); sc, maps from the Starcraft video game (Fig. 4.5d); mazes, artificially generated

maps with passages of varying widths (1–32 pixels) (Fig. 4.5e).

As Sturtevant [72] argues, the wc3 and sc maps are a good approximation of outdoor

environments, and while the rooms maps simulate indoor environments very well, random

map problems are typically used for benchmarking of incremental path planning algorithms

[9, 10, 12]. Finally, this mazes map set benefits from many difficult problems with dead-ends.

Each data-set features distinct characteristics. In the mazes map-set, it is possible for even

a minor change to cause extensive modification to the shortest path. Additionally, this random

dataset is characterized by many small changes that do not significantly affect the path. Such

a property of maps is related to the dimension parameter described and calculated for each

map-set by Sturtevant [72]. (Refer to Table 4.1, for a dimension value for each map-set used

in the experiments.) The dimension of a map-set describes the increase in the number of nodes

at each depth of searching. As explained by Sturtevant [72], this dimension is an estimation of

the branching factor of the search-tree generated while searching (not to be confused with the

number of applicable actions, which is domain specific).

58

In each setting, maps sized 512x512 were used (except for the sc map-set in which few

maps is larger), with an observation range of 10 map cells. For each original map, a map with

modifications was prepared. According to the suggestions of Sturtevant [72], the experimental

results were ordered by the problem-length (plots in Figures 4.6 through 4.9). In setting 1, in

Figures 4.6 through 4.8, x-coordinate indicates the true shortest path calculated by A* algorithm

running on a modified map, which is initially unknown for the agent. In setting 2, in Figure 4.9,

x-coordinate indicates the overhead of the initially known shortest path over the true shortest

path, that is, true_shortest_path_cost− initial_shortest_path_cost.

The plots in Figures 4.6 through 4.9 were created by grouping problems into buckets, this

was according to Sturtevant [72]’s proposition, except that bucket size may vary between

map-sets. Additionally, in the background of each plot, a histogram illustrates a coverage

by problems. Plot values were calculated for buckets that contained a minimum of seven

successfully solved problems. For each bucket, a mean was calculated to be presented in the

plot. This value excluded the two most extreme values in that bucket.

4.6.1 Planning with freespace assumption

Planning with freespace assumption is a scenario in which the first planning episode is

performed on an empty map. Obstacles are added to the map only if they are observed within

the observation range, which means that action costs can only increase4. As there is no need

to reestablish values consistency for h, in this case MPGAA* [12] behaves similar to MPAA*

[67]. Although this is a preferable situation for MPGAA*, as it requires reinitialization of

underestimated nodes, it is the most demanding scenario for D* Lite and D* Extra Lite.

In Table 4.1, average parameters values logged for planning with freespace assumption are

shown. For each map-set, 10,000 randomly selected problems have been solved. In the majority

of cases, D* Extra Lite is the quickest (highlighted Tt values in Table 4.1), only for random

maps with 10% fill-ratio does D* Lite outperform the other two algorithms. Given that artificial

maps have the highest dimension, generally, are less cluttered. As discussed in the complexity

analysis, this is the most preferable scenario for D* Lite.

Other parameters listed in Table 4.1 offer further support to results of the complexity

analysis. Since D* Lite performs reinitialization while searching, the number of search steps

for D* Extra Lite is lower than for D* Lite, as well as the number of operations on the heap. In

turn, due to search-tree branch cutting, D* Extra Lite performs many more iterations over the

predecessors list. The number of iterations over the successors list for the mazes map-set is also

4 A video demonstrating the three algorithms tested in this study in planning with freespace assumption is
available at https://youtu.be/al2L_TJXnoY

59

Table 4.1: The average experimental results for planning with freespace assumption; Dim.
— dimension [72], Tr — reinitialization time [ms], Ts — search time [ms], Tt — total time
[ms], Rt — total time ratio, #S.Steps — number of search steps, #Heap — number of heap
operations, #Preds — number of iterations over predecessors, #Succs — number of iterations
over successors, P. Cost — traveled path cost [map cells].
Map set Dim. Tr Ts Tt Rt #S.Steps #Heap #Preds #Succs P. Cost Algorithm

random
10%

1.13
3.53 21.51 25.04 1.00 26151 86745 41032 17773 378.844 D* Extra Lite
0.57 22.55 23.11 0.92 26119 90777 23387 972 378.844 D* Lite Opt.
0.13 27.64 27.77 1.11 32621 92960 0 32621 378.031 MPGAA*

rooms 0.88
6.58 42.66 49.24 1.00 81348 189873 72708 34510 891.093 D* Extra Lite
1.51 51.75 53.27 1.08 89149 250085 40511 16464 891.093 D* Lite Opt.
0.30 176.85 177.15 3.60 277328 834970 0 277328 909.645 MPGAA*

wc3 0.75
2.19 19.93 22.12 1.00 33384 75607 28994 10502 461.109 D* Extra Lite
0.66 24.28 24.94 1.13 35867 104626 19348 6241 461.109 D* Lite Opt.
0.13 69.44 69.57 3.15 100582 296381 0 100582 463.155 MPGAA*

sc 0.41
10.90 87.56 98.46 1.00 163964 381328 149447 59992 1621.865 D* Extra Lite

2.60 114.67 117.28 1.19 186328 541962 96924 49940 1621.865 D* Lite Opt.
0.49 586.66 587.16 5.96 947837 2770506 0 947837 1616.717 MPGAA*

random
40%

0.09
22.04 89.26 111.31 1.00 225760 564389 232905 126502 6613.036 D* Extra Lite
10.27 153.53 163.80 1.47 332119 898930 129432 164981 6613.036 D* Lite Opt.

1.75 416.04 417.79 3.75 902292 2692626 0 902292 6531.051 MPGAA*

mazes 0.02
80.85 365.23 446.08 1.00 714783 1843893 826248 441713 18254.245 D* Extra Lite
26.75 839.49 866.24 1.94 1093015 3328033 535517 1041180 18254.245 D* Lite Opt.

4.99 4013.32 4018.31 9.01 6806971 19593377 0 6806971 18396.122 MPGAA*

interesting, since it is higher for D* Lite than for D* Extra Lite. These results are consistent

with the worst-case time complexity of D* Lite (Eq. 4.5) and D* Extra Lite (Eq. 4.6), such that

D* Lite may perform the iteration over successors up to log b times more often than D* Extra

Lite.

Finally, in Table 4.1, the traveled-path cost is presented. D* Lite and D* Extra Lite are

equivalent, however, the traveled path cost varies for MPGAA*. This is due to the fact that,

while many paths of the same length exist in the 2D grid domain, different algorithms break

ties in different ways. (For example, D* Lite and D* Extra Lite break ties as shown in line 18

of Algorithm 4.1.) Although all three algorithms are optimal, the consequences of the selected

next step are unpredictable, and a chosen path could be a dead-end.

In Figures 4.6 through 4.8 the total time in the function of problem length is shown. For

problems of a short length, the algorithms finished missions in a comparable time, although

with increasing path length, differences become more pronounced. For the random_10 maps

(Fig. 4.6a), D* Lite is noticeably the quickest. However, with increasing problem complexity,

differences between the algorithms increase in favor of D* Extra Lite, including for random

maps. In the case of random maps with a fill-ratio of 40% (Fig. 4.8a), which due to obstacle

density are more similar to mazes, D* Extra Lite is 1.47 times faster than D* Lite. MPGAA*

seems more case-sensitive than D* Lite and D* Extra Lite; total-time plots for MPGAA* in

60

Figures 4.6b, 4.7a, b, and 4.8a, are more uneven than are corresponding time plots for the other

algorithms.

0
10

0
20

0
30

0
40

0

N
um

be
r

of
 p

ro
bl

em
s

0 100 200 300 400 500

0
10

20
30

40
50

Total time

True shortest path cost [map cells]

T
im

e
[m

s]

(test: freespace; maps: random_10)

D*ExtraLite
D*LiteOpt.
MPGAA*

0
10

0
20

0
30

0
40

0

N
um

be
r

of
 p

ro
bl

em
s

0 200 400 600 800

0
50

10
0

15
0

20
0

25
0

Total time

True shortest path cost [map cells]
T

im
e

[m
s]

(test: freespace; maps: rooms)

D*ExtraLite
D*LiteOpt.
MPGAA*

a) b)

Figure 4.6: Total running time for planning with freespace assumption, for random_10 (a),
rooms (b) map-sets; in the background the histogram of problems plotted in gray.

0
10

0
20

0
30

0
40

0

N
um

be
r

of
 p

ro
bl

em
s

0 100 200 300 400 500

0
20

40
60

80

Total time

True shortest path cost [map cells]

T
im

e
[m

s]

(test: freespace; maps: wc3)

D*ExtraLite
D*LiteOpt.
MPGAA*

0
10

0
20

0
30

0
40

0

N
um

be
r

of
 p

ro
bl

em
s

0 500 1000 1500

0
20

0
40

0
60

0

Total time

True shortest path cost [map cells]

T
im

e
[m

s]

(test: freespace; maps: sc)

D*ExtraLite
D*LiteOpt.
MPGAA*

a) b)

Figure 4.7: Total running time for planning with freespace assumption, for wc3 (a), sc (b)
map-sets; in the background the histogram of problems plotted in gray.

61

0
10

0
20

0
30

0
40

0

N
um

be
r

of
 p

ro
bl

em
s

0 500 1000 1500 2000

0
10

0
20

0
30

0
40

0
50

0

Total time

True shortest path cost [map cells]

T
im

e
[m

s]
(test: freespace; maps: random_40)

D*ExtraLite
D*LiteOpt.
MPGAA*

0
10

0
20

0
30

0
40

0

N
um

be
r

of
 p

ro
bl

em
s

0 1000 2000 3000 4000 5000 6000 7000

0
50

0
10

00
15

00

Total time

True shortest path cost [map cells]

T
im

e
[m

s]

(test: freespace; maps: mazes)

D*ExtraLite
D*LiteOpt.
MPGAA*

a) b)

Figure 4.8: Total running time for planning with freespace assumption, for random_40 (a) and
mazes (b) map-sets; in the background the histogram of problems plotted in gray.

4.6.2 Planning on maps with shortcuts and barriers

A characteristic property of D* Lite, D* Extra Lite and MPGAA* is that they reveal different

behaviors when confronted with action-cost increase and decrease, therefore, a new test is

proposed. Considering that in the first half of the problems, obstacles were added only

(barriers), and in the second half, obstacles were removed only (shortcuts), problems were

resolved simply by solving the first half with the freespace assumption, and in the second half,

assuming the opposite, such that, although to begin with the agent knows the entire map, as

the true map is empty, obstacles can only disappear. Using this approach, for each of three

representative map-sets (namely random_10, rooms and wc3), 5,000 problems with shortcuts

and 5,000 problems with barriers were solved. In Figure 4.9, results with a negative path cost

overhead correspond to problems with shortcuts, while results with a positive path cost overhead

correspond to problems with barriers.

In Figure 4.9a, d and g represent the total time for random_10, wc3 and rooms map-sets are

shown, respectively. D* Extra Lite outperforms D* Lite and MPGAA* algorithms for barriers

(positive path cost overheads in Figure 4.9 d and g). Moreover, the superiority of D* Extra Lite

increases with the difference between true path-length and initial path-length. Next to the total

time charts, the search time (Fig. 4.9b, e, h) and the reinitialization time plots for each map-set

are presented (Fig. 4.9c, f, i). Search time is a dominating component for all three algorithms,

however in case of MPGAA* and D* Extra Lite, reinitialization time is also meaningful.

62

0
10

0
20

0
30

0
40

0

N
um

be
r

of
 p

ro
bl

em
s

−20 0 20 40

0
50

10
0

15
0

20
0

25
0

Total time

True shortest path cost overhead [map cells]

T
im

e
[m

s]

(test: shortcuts and barriers; maps: random_10)

D*ExtraLite
D*LiteOpt.
MPGAA*

0
10

0
20

0
30

0
40

0

N
um

be
r

of
 p

ro
bl

em
s

−20 0 20 40

0
50

10
0

15
0

20
0

25
0

Search time

True shortest path cost overhead [map cells]

T
im

e
[m

s]

(test: shortcuts and barriers; maps: random_10)

D*ExtraLite
D*LiteOpt.
MPGAA*

0
10

0
20

0
30

0
40

0

N
um

be
r

of
 p

ro
bl

em
s

−20 0 20 40

0
50

10
0

15
0

20
0

25
0

Reinitialization time

True shortest path cost overhead [map cells]

T
im

e
[m

s]

(test: shortcuts and barriers; maps: random_10)

D*ExtraLite
D*LiteOpt.
MPGAA*

a) b) c)

0
10

0
20

0
30

0
40

0

N
um

be
r

of
 p

ro
bl

em
s

−300 −200 −100 0 100 200 300

0
50

10
0

15
0

20
0

25
0

Total time

True shortest path cost overhead [map cells]

T
im

e
[m

s]

(test: shortcuts and barriers; maps: rooms)

D*ExtraLite
D*LiteOpt.
MPGAA*

0
10

0
20

0
30

0
40

0

N
um

be
r

of
 p

ro
bl

em
s

−300 −200 −100 0 100 200 300

0
50

10
0

15
0

20
0

25
0

Search time

True shortest path cost overhead [map cells]

T
im

e
[m

s]

(test: shortcuts and barriers; maps: rooms)

D*ExtraLite
D*LiteOpt.
MPGAA*

0
10

0
20

0
30

0
40

0

N
um

be
r

of
 p

ro
bl

em
s

−300 −200 −100 0 100 200 300

0
50

10
0

15
0

20
0

25
0

Reinitialization time

True shortest path cost overhead [map cells]

T
im

e
[m

s]

(test: shortcuts and barriers; maps: rooms)

D*ExtraLite
D*LiteOpt.
MPGAA*

d) e) f)

0
10

0
20

0
30

0
40

0

N
um

be
r

of
 p

ro
bl

em
s

−300 −200 −100 0 100 200

0
50

10
0

15
0

20
0

25
0

Total time

True shortest path cost overhead [map cells]

T
im

e
[m

s]

(test: shortcuts and barriers; maps: wc3)

D*ExtraLite
D*LiteOpt.
MPGAA*

0
10

0
20

0
30

0
40

0

N
um

be
r

of
 p

ro
bl

em
s

−300 −200 −100 0 100 200

0
50

10
0

15
0

20
0

25
0

Search time

True shortest path cost overhead [map cells]

T
im

e
[m

s]

(test: shortcuts and barriers; maps: wc3)

D*ExtraLite
D*LiteOpt.
MPGAA*

0
10

0
20

0
30

0
40

0

N
um

be
r

of
 p

ro
bl

em
s

−300 −200 −100 0 100 200

0
50

10
0

15
0

20
0

25
0

Reinitialization time

True shortest path cost overhead [map cells]

T
im

e
[m

s]

(test: shortcuts and barriers; maps: wc3)

D*ExtraLite
D*LiteOpt.
MPGAA*

g) h) i)

Figure 4.9: Running times for planning with shortcuts and barriers, for random_10 (a,b,c),
rooms (d,e,f) and wc3 (g,h,i) map-sets; in the background the histogram of problems plotted in
gray.

63

Table 4.2: The average experimental results for planning with shortcuts and barriers; Tr —
reinitialization time [ms], Ts — search time [ms], Tt — total time [ms], Rt — total time ratio,
#S.Steps — number of search steps.

Map set Shortcuts Barriers Algorithm
Tr Ts Tt Rt #S.Steps Tr Ts Tt Rt #S.Steps

random
10%

0.64 42.38 43.02 1.00 42337 3.44 20.29 23.73 1.00 23295 D* Extra Lite
0.46 41.92 42.38 0.99 42097 0.76 20.83 21.59 0.91 23991 D* Lite Opt.

79.08 63.17 142.25 3.31 219139 0.19 28.68 28.87 1.22 31006 MPGAA*

rooms
0.34 44.28 44.62 1.00 46932 7.21 46.70 53.91 1.00 79038 D* Extra Lite
0.25 45.23 45.48 1.02 46815 1.63 56.71 58.34 1.08 86192 D* Lite Opt.

213.40 155.09 368.49 8.26 558437 0.35 164.00 164.35 3.05 250108 MPGAA*

wc3
0.17 22.68 22.85 1.00 27166 4.41 36.99 41.40 1.00 71476 D* Extra Lite
0.12 23.50 23.62 1.03 27085 1.43 48.71 50.14 1.21 79794 D* Lite Opt.

70.53 68.81 139.34 6.10 234615 0.30 179.73 180.03 4.35 305136 MPGAA*

A property of the D* Extra Lite algorithm is that reinitialization time is high only in case

of added obstacles. This is because under-consistent nodes have to be made over-consistent,

which is achieved using the CUTBRANCH() procedure (Alg. 4.3). In contrast to D* Extra Lite,

MPGAA*’s reinitialization time is higher when obstacles are removed. This is owing to its

reestablishing procedure for h value consistency. In the case of shortcuts, D* Lite and D* Extra

Lite only reopen affected nodes, and perform regular searches in the same manner. Therefore,

the total time for these two algorithms is almost equal.

In Table 4.2 average parameters for the shortcuts and barriers setting are reported. The

average values of particular parameters for barriers are similar to the ones presented in Table

4.1. Where results illustrate the effect of shortcuts, it can be seen, as expected, that the total

time, as well as the other parameters, are similar for D* Lite and D* Extra Lite, and noticeably

larger for MPGAA*.

4.6.3 Benchmark results summary

The experiments were conducted within two settings, in which maps sized 512x512 from six

different map-sets were used. For each map-set 10,000 randomly selected problems were

solved. In most experiments, D* Extra Lite performed on average from 1.08 to 1.94 times

faster than D* Lite (optimized version), and from 1.11 up to 9.01 times faster than MPGAA*.

Only in tests on random maps with a 10% fill-ratio was D* Lite 1.08 times faster than D* Extra

Lite.

The weakness of D* Extra Lite is the number of iterations over predecessors and successors,

which for all map-sets except the mazes, was higher than for the other two algorithms. This

property should be taken into consideration when selecting an algorithm for particular domain.

In domains with finite search-space, such as 2D video game maps, it is possible to initialize

64

Table 4.3: Average total time [ms] (Tt) and total-time ratios with regard to D* Extra Lite (Rt)
across different observation ranges [map cells]; test conducted with freespace assumption on
100 problems from the wc3 map-set.

Observation D* Extra Lite D* Lite Opt. MPGAA*
range Tt Tt Rt Tt Rt

10 22.42 24.83 1.11 125.41 5.59
20 24.82 26.45 1.07 129.08 5.20
50 23.19 25.48 1.10 147.59 6.36

100 18.66 20.51 1.10 94.34 5.06

the entire search-space at the beginning. An iteration over a node’s neighbors is then a simple

operation with pointers. However, as in domains with a large or infinite search-space nodes

are expanded bit-by-bit, domain-dependent implementations of Pred(s) and Succ(s) have to

be called instead of operations with pointers, therefore, results may differ. Although it should

be noted that the common technique of caching, can amortize running time. Nevertheless, the

results of the present study show that in the worst-case scenario D* Extra Lite performs less

operations than D* Lite. Therefore, irrespective of implementation, D* Extra Lite is the best

choice for difficult, dynamic problems.

The experimental results presented in the paper were gained from tests conducted with an

observation range of 10 map cells. In Table 4.3 average total running times are presented for the

planning with freespace assumption on wc3 maps with different observation ranges. Across all

three algorithms, running time changed slightly with longer observation ranges. This was the

result of more observed changes in the environment, which increased the extent to which the

search-tree became inconsistent. However, with a longer observation range, more information

was gathered. Nevertheless, the observed relationship between the total running time of each of

the analyzed algorithms, was maintained across the different observation ranges.

4.7 Conclusions

In this chapter, several incremental path-planning algorithms, including the recent MPGAA*

[12], the popular Focussed D* [9], and the currently state-of-the-art D* Lite [10], were

analyzed. In addition, older ideas, such as Differential A* [61], were revisited. In order to

provide improved insight into properties of incremental heuristic search algorithms, a new

benchmark scenario was proposed. This scenario involved planning for both shortcuts and

barriers. Considering the results of the analysis, a novel robust D* Extra Lite algorithm was

proposed. In typical two-dimensional navigation problems D* Extra Lite outperforms both D*

Lite (optimized version) and MPGAA*. In addition to comprehensive tests, the worst-case

65

complexity analysis was conducted, which showed that, independently of a particular domain

and implementation, D* Extra Lite is faster than D* Lite.

D* Extra Lite is a general purpose, incremental shortest-path algorithm able to work on

directed and undirected graphs. It is almost as simple as a regular A* algorithm, only extended

with search-tree cutting and frontier-gap repairing. A strong advantage of the D* Extra Lite

algorithm to D* Lite, is that it performs branch-cutting as a simple, recursive operation that

makes nodes unvisited without the use of complex operations on the open-list.

Additionally, the D* Extra Lite algorithm can be extended easily to an anytime incremental

search, as it will be shown in Chapter 5.

66

5. AD*-Cut: Anytime Incremental
Planning

In complex environments, in which a short computation time is more important than the

optimality, anytime planning can be used that typically quickly provides a sub-optimal solution

to improve the remaining time. A combination of anytime and incremental search algorithms

allows for solving complex problems in a changeable environment.

In this chapter, the AD*-Cut algorithm, an anytime version of D* Extra Lite (described in

Ch. 4), is proposed. To the author’s best knowledge, search-tree branch cutting has not been

used for an anytime incremental search yet; hence, AD*-Cut, which is presented in this chapter,

is a novel approach. The algorithm is tested on benchmark problems, and it is compared with

AD* [32], a state-of-the-art anytime incremental shortest path search algorithm.

5.1 Introduction

5.1.1 Anytime Planning

Anytime planning refers to algorithms that aim to find any sub-optimal solution as quickly as

possible and to incrementally improve it in the remaining time. Although anytime algorithms

do not provide any warranties on execution time, they are able to perform global planning

very quickly, even for complex planning problems, such as 20-degrees-of-freedom robotic arm

motion planning [6] or alignment of multiple DNA or protein sequences [7]. This is possibly

due to a specific property of a heuristic search. If an overestimating (inadmissible) heuristic

cost f(s) = g(s) + ε · h(s) with ε ≥ 1 is used (weighted A* [6, 7]), then the higher the ε, the

more the search-tree expansion is focused toward a goal state (it is more greedy). Although the

solution is no longer optimal, its sub-optimality is bounded by a factor of ε.

A naive implementation of anytime A* may run a new search from scratch, decreasing ε

each time, until time for planning is over. However, in such an approach, a subsequent search

does not reuse information from previous searches; thus, it unnecessarily revisits some nodes. A

basic idea to improve the overall performance of an anytime search is to prune states that cannot

67

belong to the path that is shorter than the path initially found. This is straightforward; if the gε is

the cost of the path initially found with the heuristic inflated by ε, then, g∗ it must be that g∗ ≤ gε

(gε is the upper bound) for the true least cost g∗; hence, assuming that h(s) is admissible, a state

with f(s) = g(s) + h(s) > gε cannot belong to the shortest path. This technique has been

used in Anytime A* [73] and its improved version Anytime-WA* [7]. An upper bound of the

f -value obtained from a previous search is also used for a search-loop termination in Anytime

Repairing A* (ARA*) [6], another anytime heuristic search algorithm.

Algorithm 5.1 Anytime repairing A* (ARA*)
1: function F-VALUE(s)
2: return g(s) + ε · h(s)

3: function IMPROVEPATH()
4: while F-VALUE(sgoal) > mins∈OPEN (F-VALUE(s)) do
5: s =TOPOPEN()
6: POPOPEN()
7: closed(s) = true
8: for all s′ ∈ Succ(s) do
9: if NOT visited(s′) then

10: g(s′) =∞
11: if g(s′) > g(s) + cost(s, s′) then
12: g(s′) = g(s) + cost(s, s′)
13: if NOTclosed(s′) then
14: PUSHOPEN(s′,F-VALUE(s′))
15: else
16: PUSH(s′,INCONS)
17: function MAIN(sstart, sgoal, ε, εstep)
18: g(sgoal) =∞
19: g(sstart) = 0
20: PUSHOPEN(sstart,F-VALUE(sstart))
21: IMPROVEPATH()
22: ε′ = min(ε, g(sgoal)/mins∈OPEN∪INCONS(g(s) + h(s)))
23: PUBLISHCURRENTSOLUTION() . ε′-suboptimal solution
24: while ε′ > 1 do
25: ε = ε− εstep
26: TO_REOPEN = INCONS ∪OPEN
27: CLOSED = OPEN = ∅
28: for all s ∈ TO_OPEN do
29: PUSHOPEN(s,F-VALUE(s))
30: IMPROVEPATH()
31: ε′ = min(ε, g(sgoal)/mins∈OPEN∪INCONS(g(s) + h(s)))
32: PUBLISHCURRENTSOLUTION() . ε′-suboptimal solution

The pseudocode of ARA* is shown in Algorithm 5.1. In general, a heuristic search with

an inflated heuristic expands new states in an order that does not ensure the g-value will

be minimal. Therefore, it is likely that already closed states are reopened due to g-value

improvement. In ARA*, such states are placed on the inconsistent list (INCONS) and are

reopened in a subsequent search with decreased ε, which significantly speeds up the algorithm.

68

The anytime algorithms discussed so far require additional parameters to be set beforehand

(e.g., the initial ε and decrease step εstep). This is not the case of the Anytime Nonparametric

A* (ANA*) that outperforms ARA* in most tests [8].

The ANA* also uses an f -value upper bound for state pruning; however, it owes its

predominance over ARA* to the novel open-list maintenance technique. In contrast to typical

heuristic search algorithms that, in each loop iteration, pop a state with the least f -value, in

ANA*, a state with the highest e-value is popped. The e-value is defined by Eq. 5.1, where G

is the upper bound of the f -value obtained from the previous search (initially set to a very large

number).

e(s) =
G− g(s)

h(s)
(5.1)

As e(s) is growing with decreasing h(s) and it is decreasing with growing g(s), ANA* is

greedily progressing toward a goal state and simultaneously avoiding search directions in which

the both h(s) and g(s) values are growing. This greedy effect gradually fades with decreasing

G, which is continuously improved at the end of each search episode.

5.1.2 Anytime Incremental Planning

As already mentioned, incremental search algorithms can be combined with anytime search

methods. Anytime D* (AD*) [32], is based on ARA* and D* Lite, is the most recognizable

contribution to date to address the problem of anytime incremental search. Other incremental

search algorithms that are also based on ARA* are Anytime Truncated D* [74] and the most

recent Anytime Tree-Restoring A* [75], which extends Tree-Restoring A*. As presented in this

thesis, the AD*-Cut (Sec. 5.2) algorithm is compared to AD*, which will be discussed in detail.

The pseudocode of AD* is shown in Algorithm 5.2. As AD* is based on ARA* and D* Lite,

common procedures can be recognized. The method for affected node reinitialization, which

relies on checking the rhs-value, is taken from D* Lite; thus, the procedures KEY, INITIALIZE,

UPDATESTATE, and SEARCH are similar to those of D* Lite (Alg. 4.2). Similarly to ARA*,

AD* avoids reopening nodes by placing them on the INCONS list (line 18 in Alg. 5.2) and

performs subsequent searches with a decreased heuristic inflation factor, ε, which is preceded

by an open-list re-evaluation (lines 30–35 and 41–45 in Alg. 5.2).

In connection with anytime incremental search algorithms, a question arises regarding how

to interleave map updates with path improvements. As proposed in AD* [32], there is one main

loop that is responsible for map updates, algorithm reinitialization, and navigation toward the

goal and one search loop that is responsible for path improvement with the given ε. The decision

to be made is to decrease ε and continue the path improvement or to restart the search algorithm

69

Algorithm 5.2 Anytime D* (AD*)
1: function KEY(s)
2: if g(s) > rhs(s) then return [g(s) + ε · h(s); rhs(s)]
3: else return [g(s) + h(s); g(s)]
4: function INITIALIZE()
5: g(sstart) = rhs(sstart) =∞
6: g(sgoal) =∞
7: rhs(sgoal) = 0
8: PUSHOPEN(sgoal,KEY(sgoal))
9: function EVALUATERHS(s)

10: rhs(s) =∞
11: for all s′ ∈ Succ(s) do rhs(s) = min (rhs(s), cost(s, s′) + g(s′))

12: function UPDATESTATE(s)
13: if NOT visited(s) then g(s) =∞
14: if s 6= sgoal then EVALUATERHS(s)
15: if open(s) then REMOVEOPEN(s)
16: if g(s) 6= rhs(s) then
17: if NOT closed(s) then PUSHOPEN(s, KEY(s))
18: else PUSH(s′, INCONS)
19: function SEARCH()
20: while KEY(sstart) > mins∈OPEN (KEY(s)) OR rhsstart 6= g(gstart) do
21: s =TOPOPEN()
22: POPOPEN()
23: if g(s) > rhs(s) then
24: g(s) = rhs(s)
25: closed(s) = true
26: for all s′ ∈ Pred(s) do UPDATESTATE(s′)
27: else
28: g(s) =∞
29: for all s′ ∈ Pred(s) ∪ {s} do UPDATESTATE(s′)
30: function REEVALUATEOPEN()
31: TO_OPEN = INCONS ∪OPEN
32: CLOSED = OPEN = ∅
33: for all s ∈ TO_OPEN do
34: if visited(s) AND NOT open(s) then
35: PUSHOPEN(s, CALCULATEKEY(s))
36: function REINITIALIZE()
37: if any edge cost changed then
38: for all directed edges (u, v) with changed cost do
39: update edge cost cost(u, v)
40: UPDATESTATE(u)
41: if significant edge-cost changes then
42: ε = εinit AND/OR plan from scratch
43: else if ε > 1 then
44: ε = ε− εstep
45: REEVALUATEOPEN()
46: function MAIN()
47: (. . .) . Same as in Alg. 4.1.

70

with increased (possibly initial) ε, which may be a better choice due to big changes in the map;

AD* makes such a decision after each path improvement.

5.1.3 Conclusions

All algorithms based on a weighted A* owe their efficiency to the greedy nature of searching

with an inflated heuristic; however, this is not always true. Wilt and Ruml [76] have shown

that a greedy search performs well in problems in which a heuristic cost does not differ

significantly from the actual cost; thus, examples can be found for which heuristic inflation

slows the search. Nevertheless, for typical robot motion planning applications, such as robotic

manipulator motion planning [6, 32] or autonomous car navigation [18], good heuristics can be

computed.

5.2 AD*-Cut Algorithm

The AD*-Cut algorithm is designed to perform a time-limited anytime search followed by a map

update and affected node reinitialization, in accordance to the MAIN procedure in Algorithm 4.1.

The pseudocode of AD*-Cut is shown in Algorithm 5.3. The AD*-Cut algorithm combines

the search-tree cutting technique used by D* Extra Lite with anytime repairing used by

ARA*. Consequently, the procedures KEY, SOLUTIONFOUND, SEARCHSTEP, SEARCH, and

REEVALUATEOPEN (lines 1–47 in Alg. 5.3), to a large extent, correspond to instructions of

ARA* (cf. procedures FVALUE, IMPROVEPATH, and MAIN [6]). Furthermore, the procedures

REINITIALIZE, CUTBRANCH, and CUTBRANCHES (lines 48–84 in Alg. 5.3) correspond to the

procedures of D* Extra Lite (Ch. 4, also in [13]). In the remainder of this section, the overall

operation of the algorithm is explained with a discussion of modifications that are specific to

AD*-Cut.

An anytime search loop (function SEARCH in Algorithm 5.3) performs multiple searches,

starting with ε = εinit and decreasing by εstep in subsequent searches, which is merely ARA*.

The ε value is the factor by which a heuristic is inflated, making the algorithm more greedy

and possibly quicker (line 2, Alg. 5.3). Moreover, the algorithm does not allow for reopening

states; such states are placed in the list of inconsistent nodes (lines 23–26, Alg. 5.3), which

additionally speeds up the algorithm. After a solution with a given ε is found, ε is decreased

(line 36, Alg. 5.3) and all nodes from OPEN and INCONS lists are reopened with new keys

(lines 37 and 42–47, Alg. 5.3). The search loop runs until the optimal solution is found (then

ε = 1) or granted time elapses but not before the first solution is found (line 38, Alg. 5.3). To

this point, the only modification with respect to ARA* is that each node holds an additional flag

71

visited(s) that is maintained to recognize nodes cut in the reinitialization (lines 21–22 and 46,

Alg. 5.3).

In the reinitialization, branch cutting is executed if the cost of any visited edge has changed

(lines 49–56, Alg. 5.3), otherwise only the open-list re-evaluation is done (line 57, Alg. 5.3).

For each edge with a changed cost, the CUTBRANCHES procedure does one of two possible

operations.

If the cost of the e(u, v) edge has decreased, the v node is added to the list of seeds to be

reopened later (lines 75, 78 in Alg. 5.3). In the case of an edge-cost decrease, there may be a

shorter path. Therefore, to preserve optimality, the start node should be reopened. However,

not in every case of an edge-cost decrease, the start node need to be reopened. Assuming

that h(sstart, u) is admissible, for a decreased e(u, v) edge cost, the start node sstart requires

reopening only if g(sstart) > g(v)+cost(u, v)+ε·h(sstart, u) (lines 76–77 and 82–83, Alg. 5.3).

If the cost of the e(u, v) edge has increased and node v is the parent of node u, the branch is

cut, starting from u (lines 79–81 in Alg. 5.3). The cutting operation marks a node as unvisited,

resets its parent, and removes it from the OPEN or INCONS, wherever it is placed (lines

59–62, Alg. 5.3). The CUTBRANCH() procedure is the recursive procedure that traverses

throughout the branch (i.e., the next node to cut s′ must be such a predecessor of a current

node s that the s is the parent of s′ (lines 66–68 in Alg. 5.3). Each successor node s′, such

that s 6= parent(s′), is placed in the list of seeds (lines 64–66 in Alg. 5.3). Although seeds are

simply nodes to reopen, as they might be cut later, they cannot be merely pushed to the open

list. Following the CUTBRANCHES() procedure, the REINITIALIZE() procedure pushes to the

open list only these nodes from the seeds list that remain visited and are not already open (lines

54–56 in Alg. 5.3). This operation repairs the frontier gap made by branch cutting.

The AD*-Cut algorithm reserves a certain time for as much path improvement as possible,

each with decreased ε. After a timeout, it returns to the main loop (procedure SEARCH

in Alg. 5.3), in which the map update is performed. Although AD*-Cut, as presented in

Algorithm 5.3, does not perform ε reinitialization, it is possible to apply some reinitialization

rules, for example, based on a measure of map changes, like in AD* (lines 41–42 in Alg. 5.2).

5.3 Benchmark Results

In the experiments, AD*-Cut and AD* [32] were compared. Both algorithms were using

the same implementation of a heap and domain-specific functions, such as successor and

72

Algorithm 5.3 AD*-Cut. Required parameters: εinit, εstep.
1: function CALCULATEKEY(s)
2: return g(s) + ε · h(sstart, s)

3: function SOLUTIONFOUND()
4: kstart = CALCULATEKEY(sstart)
5: ktop = CALCULATEKEY(TOPOPEN())
6: return visited(sstart) AND kstart ≤ ktop
7: function INITIALIZE()
8: ε = εinit
9: visited(sgoal) = true

10: parent(sgoal) = NULL
11: g(sgoal) = 0
12: PUSHOPEN(sgoal, CALCULATEKEY(sgoal))
13: function SEARCHSTEP()
14: s =TOPOPEN()
15: POPOPEN()
16: closed(s) = true
17: for all s′ ∈ Pred(s) do
18: if NOT visited(s′) OR g(s′) > cost(s′, s) + g(s) then
19: parent(s′) = s
20: g(s′) = cost(s′, s) + g(s)
21: if NOT visited(s′) then
22: visited(s′) = true

23: if closed(s′) AND ε > 1 then
24: if NOT inconsistent(s′) then
25: inconsistent(s′) = true
26: PUSH(s′, INCONS)
27: else
28: PUSHOPEN(s′, CALCULATEKEY(s′))
29: function SEARCH()
30: found = false
31: while open-list is not empty do
32: if SOLUTIONFOUND() then
33: found = true
34: if ε = 1 then . As the optimal solution is found,
35: return found . the search loop terminates.
36: ε = ε− εstep
37: REEVALUATEOPEN()
38: if found AND time elapsed then . The search loop runs until
39: return found . the first solution or a timeout.
40: SEARCHSTEP()
41: return found

predecessor generation, action cost, heuristic (the Euclidean distance) and affected state

computation.1

1The implementation of AD* and domain-specific functions were obtained from the SBPL library http:
//sbpl.net/.

73

42: function REEVALUATEOPEN()
43: TO_OPEN = INCONS ∪OPEN
44: CLOSED = OPEN = ∅
45: for all s ∈ TO_OPEN do
46: if visited(s) AND NOT open(s) then
47: PUSHOPEN(s, CALCULATEKEY(s))
48: function REINITIALIZE()
49: if any edge cost changed then
50: CUTBRANCHES()
51: REEVALUATEOPEN()
52: if SEEDS 6= ∅ then
53: for all s ∈ SEEDS do
54: if visited(s) AND NOT open(s) then
55: PUSHOPEN(s, CALCULATEKEY(s))
56: SEEDS = ∅
57: else REEVALUATEOPEN()
58: function CUTBRANCH(s)
59: visited(s) = false
60: inconsistent(s) = false
61: parent(s) = NULL
62: REMOVEOPEN(s)
63: for all s′ ∈ Succ(s) do
64: if visited(s′) AND NOT parent(s′) = s then
65: SEEDS = SEEDS ∪ s′
66: for all s′ ∈ Pred(s) do
67: if visited(s′) AND parent(s′) = s then
68: CUTBRANCH(s′)
69: function CUTBRANCHES()
70: reopen_start = false
71: for all directed edges (u, v) with changed cost do
72: if visited(u) AND visited(v) then
73: cold = cost(u, v)
74: update edge cost cost(u, v)
75: if cold > cost(u, v) then
76: if g(sstart) > g(v) + cost(u, v) + ε · h(sstart, u) then
77: reopen_start = true

78: SEEDS = SEEDS ∪ v
79: else if cold < cost(u, v) then
80: if parent(u) = v then
81: CUTBRANCH(u)
82: if reopen_start = true AND visited(sstart) then
83: SEEDS = SEEDS ∪ sstart
84: function MAIN()
85: (. . .) . Same as in Alg. 4.1.

74

The benchmark problems and map sets wc3, rooms, and mazes16 (mazes with the corridor

width of 16 map cells) were obtained from the benchmark prepared by [72]. For each map set,

100 problems of similar length (from 400 to 440 map cells) were solved.

The algorithms were tested with the freespace assumption, in which obstacles are only

added, which is a harder case for D*-like algorithms than an obstacle disappearance (Sec. 4.4,

also in [13]). To ensure comparable conditions for both algorithms, a robot was moving along

a precomputed optimal path, which is a common assumption [75]. After each robot step,

a map-update function was called. The map-update function simulates a 360◦ rangefinder

working with a resolution of 1◦ and an observation range of 100 map cells.

The search space was a (x, y, yaw) state lattice (a 2D position with rotation) with a total

size of 512x512x16 states (16 possible orientations) and seven applicable actions (motion

primitives) per state. The longest motion primitive was eight map cells long. The simulated

robot was 10 map cells wide and long, with the exception for tests on the rooms map set, in

which the robot was the size of a single map cell (due to narrow passages of a single cell

width).

In Table 5.1, the results of planning within a 1 s time limit with εinit = 5 and εstep = 0.2 are

presented. The algorithms were allowed to exceed the 1 s time limit when they were searching

for the first solution. The following parameters were logged: reinitialization time (excluding

time necessary for map-change computation), time until first solution, overall search time, loop

time (total time spent in a single iteration of the main loop, including map updates), search

step counts, average ε, and average path cost. The overall performance ratio is presented at the

bottom of Table 5.1.

On average, AD*-Cut provided the first solution 1.47 times faster than AD*. Furthermore, it

performed path improvements 4.65 faster and accomplished each main loop iteration 1.41 faster

than AD*. The average ε value achieved by AD* was 1.35 times higher than that of AD*-Cut.

Consequently, the average path cost returned by AD* was 1.05 higher than that of AD*-Cut.

The possible advantage of AD* over AD*-Cut is seen when the maximum times are

analyzed. The AD*-Cut algorithm is more sensitive to situations in which a large part of the

search tree needs to be cut, but without substantial change in the cost of a re-planned path.

However, unlike AD*, AD*-Cut was run without additional improvements, such as planning

from scratch in the case of large changes in the map.

75

Table 5.1: The experimental results for planning with freespace assumption on (x, y, yaw) state
lattice. The presented values are calculated as average values per single re-planning episode
after solving 100 problems for each map set.

Map Set Algorithm
Reinit.

Time [s]

First
Solution
Time [s]

Search Time [s] Loop Time [s] #Search
Steps Avg. ε

Avg.
Path
Cost
Ratio

Avg. Max Avg. Max Avg. Max Avg. Max

wc3
AD*-Cut 0.274 4.037 0.115 2.677 0.171 2.819 0.708 5.372 41327 1.14 1.00
AD* 0.057 0.161 0.152 2.038 0.697 2.239 0.757 2.335 30003 1.58 1.11

rooms AD*-Cut 0.183 6.258 0.068 2.363 0.099 2.469 0.293 6.618 29292 1.07 1.00
AD* 0.004 0.031 0.069 0.871 0.646 1.323 0.650 1.332 21453 1.26 1.03

mazes
16

AD*-Cut 0.277 11.951 0.147 6.974 0.176 6.996 0.535 13.059 39664 1.08 1.00
AD* 0.029 0.145 0.265 6.693 0.729 6.816 0.759 6.903 33996 1.59 1.02

Performance
Ratio

AD* /
AD*-Cut

0.12 0.02 1.47 0.80 4.65 0.84 1.41 0.42 0.77 1.35 1.05

5.4 Conclusions

Search-tree branch cutting is a simple reinitialization technique utilized by the D* Extra Lite

algorithm (Ch. 4). This technique can be easily used in combination with the ARA* algorithm

[6] resulting in AD*-Cut, a new anytime incremental search algorithm. The results of planning

on (x, y, yaw) state lattices suggest that AD*-Cut is quicker and achieves shorter paths than

AD*, the state-of-the-art anytime incremental search algorithm [32].

In the future, AD*-Cut will be compared with Anytime Truncated D* [74] and Anytime

Tree-Restoring A* [75], and the problem of time-consuming reinitialization will be addressed.

76

6. Planning in a Dynamic Environment

In this chapter, the problem of path planning in the presence of moving obstacles is discussed.

As the presence of moving obstacles imposes time as an additional dimension of a state space,

this problem will be referred to as time-dependent planning. In particular, the presented

discussion focuses on the time-dependent planning with the use of heuristic search algorithms

working on grid-based maps and state lattices that are the state-of-the-art search-space

representations for mobile robot motion planning.

A basic notation for time-dependent planning is given in Section 6.1. The next section

(Sec. 6.2) presents related work. In Section 6.3, an event-based state-time space decomposition

is described, which is a generalization of the safe intervals method (SIPP)[22] and obstacle

layers method presented by the author in [23] and can also be used in action planning. Using

an event-based state-time space decomposition, time-dependent planning is analyzed for its

applicability in a forward heuristic search (Sec. 6.4), a learning real-time heuristic search

(Sec. 6.7.1), and an anytime heuristic search (Sec. 6.7.2).

6.1 State-time space definition

A basic notation for motion planning used in this chapter is similar to the one used in Chapter 3,

which is as follows:

• W: a workspace,

• A: a robot (a robotic car in Fig. 6.1a),

• O: an obstacle region inW ,

• C = {q1, q2, . . .}: a configuration space,

• S = {s1, s2, . . .}: a state space, such that s = (q, q̇), where q ∈ C,

• A = {a1, a2, . . .}: a set of actions applicable in S, such that for each action a = 〈s1, s2〉,
the begin state s1 ∈ S and the end state s2 ∈ S are defined,

• τ(a, p) : A × [0, 1] → S: a motion primitive (a continuous trajectory in a state space)

represented by an action a,

• γ(a = 〈s1, s2〉) = s2 : A→ S: a transition function that returns an action end state,

77

• γ−1(a = 〈s1, s2〉) = s1 : A → S: an inverse transition function that returns an action

begin state.

A problem of path planning with moving obstacles requires time as an additional dimension

of a search space; thus, we have CT = C × T and ST = S × T for a configuration-time

space [77] and state-time space [21], respectively. (As state-time space is an enhancement of a

configuration-time space, further discussion is conducted only for ST .) As obstacles can move,

an obstacle region is a function of time O(t). In particular, the moving obstacle region is an

union of regions occupied by many obstaclesOdynamic(t) =
⋃n
i=1Oi(t), such thatOi(t) reflects

an occupied workspace along i-th obstacle trajectory.

In the dynamic situation shown in Figure 6.2a, that will be used throughout this chapter as

a leading example, it is possible to control a robotic car A that can move only forward and

backward along a road, x, which generates a 1D state space. The road is crossing two tracks

along which trains, O1 and O2, are moving. For such a situation, a 2D state-time space can be

constructed (Fig. 6.2b, c). As the car is initially crossing the first track (Fig. 6.2a), depending

on train speeds and the dynamic constraints of the car, it can drive back and let both trains cross

the road (Fig. 6.2b), or it can accelerate to cross the track before the first train and slow to let

the second train cross the road (Fig. 6.2c).

After the introduction, definitions specific to time-dependent planning can be given:

• T = {t1, t2, . . .}: a set of time points,

• O(t) =
⋃n
i=1Oi(t) ∪ Ostatic: an obstacle region at a given time point t that is a union of

regions occupied by moving obstacles Oi(t) at t and the static obstacle region Ostatic,
• ST = S × T : a state-time space, where s̃ ∈ ST is a state holding at time t defined as

s̃ = (s, t),

• ST obs = {(s, t) ∈ ST |A(s, t) ∩ O(t) 6= ∅}: a set of collision states that will be

considered an open set,

• ST free = ST \ ST obs: a set of collision-free states that is a complement of ST obs.
It is important to note that ST free and ST obs can be viewed as static regions in a state-time

space (e.g., Fig. 6.1b,c).

For a state-time space, an action-time space AT can be defined as AT = A× T , such that

an action ã ∈ AT is defined as ã = 〈s̃1, s̃2〉, where s̃1 = (s1, t1), s̃2 = (s2, t2) ∈ ST . In

time-dependent planning, it is assumed that, for each action, end time t2 must be greater than

begin time t1. In other words, actions cannot have zero or negative duration.

For an action ã ∈ AT , the following functions can be defined:

• begin(ã) : AT → T returns an action begin time t1,

• end(ã) : AT → T returns an action end time t2,

• duration(ã) = end(ã)− begin(ã) : AT → T returns an action duration,

78

x

t

V+
max

V-
max

STobs,2

STobs,1 STobs,static

x

t

STobs,2STobs,1

STobs,static

a)

b) c)

O1

O2

OstaticA V+
maxV-

max

V+
maxV-

max

x

Figure 6.1: Example of (a) time-dependent planning and (b and c) the state-time spaces for
the two sample situations. A: a car, O1,O2: two trains, Ostatic: a static obstacle, vmax: the
maximum speed of the car, vmin: the minimum speed of the car (reverse speed), dot: a start
state, cross: a goal state, dashed-line; the shortest-path in a state-time space.

• τ̃(ã, p) : AT × [0, 1]→ ST is a motion primitive (continuous trajectory) represented by

an action ã.

As actions have duration, only part of ST is reachable from a given starting state, namely,

a reachable set, ST reach (Fig. 6.2a). Consequently, a given state is reachable only from some

part of ST , namely, a backward-reachable set, ST −1reach (Fig. 6.2b).

Reachable sets can be obtained with the following recursive functions:

• reach(s̃) = {s̃} ∪
⋃
ã=〈s̃,s̃′〉∈AT |s̃′∈ST free

reach(s̃′) : ST free → 2ST free: a function that

returns a set of all future collision-free states reachable starting from a given state,

• reach−1(s̃) = {s̃} ∪
⋃
ã=〈s̃′,s̃〉∈AT |s̃′∈ST free

reach−1(s̃′) : ST free → 2ST free: a function

that returns a set of all past collision-free states from which a given state is reachable.

By definition, reachable sets are subsets of ST free; hence, reach(s̃) ∈ 2ST free and

reach−1(s̃) ∈ 2ST free , where 2ST free is a power set of ST free. Reachable sets are constructed

recursively (i.e., starting from a given state s̃, s̃ is added to a reachability set, then the same

79

x

t

V+
max

V-
max

x

t

V+
max

V-
max

STreach

STreach-1

a) b)

Figure 6.2: Sample reachable sets in a state-time space: a) ST reach = reach(s̃) is a reachable
set starting from state s̃, b) ST −1reach = reach−1(s̃) is backward reachable (i.e., is a set from
which state s̃ is reachable).

procedure is repeated for each successor state s̃′ of s̃ (or predecessor state s̃′, in case of

reach−1(s̃))). In addition to that, the shape of a reachable set depends on constraints on actions,

which can be of different types (e.g., acceleration limits or domain-specific constraints, such

as one-way roads). In Figure 6.2, the reachable sets are constrained only by the maximum

forward and reverse speeds (i.e., there are no limits on a speed change). If acceleration limits

are considered, a reachable set can have a more elaborate shape (Fig. 6.3). In the presence

of dynamic constraints, for the example from Figure 6.1a, a state-time space is 3D, such that

s̃ = (q, q̇, t); therefore, Figure 6.3 depicts a projection on the q, t plane.

x

t

x

t

V+
max

V-
max

V+
max

V-
max

STreach

STreach-1v vs

s

a) b)

Figure 6.3: Sample reachable sets in a 3D state-time space (i.e., (q, q̇, t)-space) under velocity
and acceleration limits (i.e., q̇ ∈< vmin, vmax > and q̈ ∈< amin, amax >), where (a) ST reach =
reach(s̃) is a reachable set starting from a state s̃ (with a speed equal to 0) and (b) ST −1reach =
reach−1(s̃) is a set from which a state s̃ (with 0 velocity) is reachable.

80

In mobile robot motion planning, it is a common approach to use a cost map that provides

costs of the robot presence at a given point in a workspace (consequently, at a state in a state

space). A cost may reflect the collision probability or distance from an obstacle. Cost-map

values, provided by function cm(s̃) : ST → [0, 1], can be incorporated into time-dependent

planning as a constraint on the maximum speed at a given state s̃ in a state space, such that, for

each action ã = 〈s̃1, s̃2〉, where s̃1 = (s1, t1) and s̃2 = (s2, t2), the following holds:

‖s2 − s1‖
t2 − t1

≤ cm(s̃1) · vmax. (6.1)

The sample reachable sets under cost-map constraints are shown in Figure 6.4, in which one

can note the smoothed borders of these sets.

x

t

V+
max

V-
max

STreach

x

t

V+
max

V-
max

STreach-1

V-
max

a) b)

Figure 6.4: Sample reachable sets under cost-map constraints: a) ST reach = reach(s̃) is a
reachable set starting from a state s̃, b) ST −1reach = reach−1(s̃) is a set from which a state s̃
is reachable. Blurred regions depict cost-map values ranging from 0 to 1, depending on the
distance from ST obs.

In Figures 6.2b, 6.3b, and 6.4b, which represent backward-reachable sets, unreachable

regions around obstacles can be observed. In fact, these are regions of inevitable collision

ST ric, as proposed in [78]. It can be proposed that for each state s̃ in a region of inevitable

collision ST ric a reachable set obtained with reach(s̃) is bounded (in space by the robot

velocity limits and in time by ST obs).

6.2 Related Work

State-space sampling or state-space decomposition methods, discussed in Section 3.1.2,

which are cell decomposition, Voronoi diagrams, visibility diagrams, random sampling, and

discretization (regular grids or lattices), can also be applied to a state-time space. Particular

81

algorithms for motion planning amid moving obstacles can combine different sampling or

decomposition methods for a space and for time dimensions. For example, while the

algorithms described in [33, 79] combine space random sampling with evenly discretized

time, the algorithms described in [22, 80, 23] use regular grids for a space representation and

combinatorial cell decomposition for the time dimension.

Combinatorial Search Methods

If obstacles and a robot are polygons (or polyhedra), and obstacle movements are piecewise

linear, then ST obs is also a polygon (or a polyhedron). In such a case, exact methods, such as a

cylindrical decomposition [81] or visibility graph [77], can be used to construct a search graph.

In both methods, time is sliced at points of the obstacle velocity change (corners of ST obs).
A similar approach has been presented in [82], in which a modified visibility graph method

(modified to obey the speed limit) is spanned over a configuration-time space. The graph is

used to calculate multiple time intervals in which a goal configuration is reachable, such that

the solution is valid for multiple start intervals. A common drawback of the aforementioned

methods is that the complexity of cell decomposition or visibility graph construction makes

these algorithms impractical, even for 2D motion planning.

Sampling-based Methods

As sampling-based methods are typically used for solving hard and high-dimensional motion

planning problems, they were also used for planning in dynamic environments (e.g., approaches

based on PRM [83, 84, 85] and approaches based on RRT [35, 86]). A method proposed in [83]

is presented as PRM-based (i.e., it picks at random samples with some probability distribution).

However, it constructs a tree by sampling a time milestone for which a random control is

applied, which makes it similar to RRT. In [84], this approach has been extended to solve the

boundary value problem by construction of a secondary tree, rooted at the goal state, which is

expanded backward in time.

An approach that combines PRM and RRT algorithms was proposed in [85], in which, a

PRM with lazy collision checking is initially constructed for a static environment. In the query

phase, a static path is checked for collision with moving obstacles, and the roadmap is locally

repaired with RRT if necessary. If a local repair fails, the roadmap construction algorithm

continues. A similar method that uses a roadmap constructed for a static environment was

proposed in [33, 87, 79]; however, time is discretized, such that the state-time search-graph can

be viewed as a set of regular grids spanned along roadmap edges.

82

In [88], a space-time exploration guided heuristic search (STEHS) for autonomous cars has

been proposed. The STEHS utilizes a two-stage hierarchical heuristic search. The first stage is a

heuristically guided exploration that is responsible for construction of a collision-free corridor

consisting of overlapping cylinders in a state-time space. The second stage is an RRT-like

kinodynamic motion planning algorithm that constructs a collision-free trajectory consisting of

dynamically feasible motion primitives within the corridor expanded at the first stage.

Local Planning

The solutions that purely rely on RRT are described in two papers [35, 86]. What is important

is that, in both cases, kinodynamic planning is performed locally. A safe motion planning in a

dynamic environment was thoroughly investigated in [35], with the conclusion that planning

needs to be performed in real time. As no global planning methods can ensure real-time

performance, it is necessary to provide such a local planner that returns plans that do not lead

to a collision in a certain time horizon. A path provided by a local planner cannot contain

inevitable-collision states [35].

In [86], the problem of inevitable collision states has been resolved using the modified RRT

algorithm that uses a potential field computed around the trajectory of each moving object.

When the time for RRT is over, a local path is reconstructed starting from the node with the

least cost.

Within a finite time horizon it is also possible to apply a numerical optimization method

that provides smooth trajectory with a minimized collision cost [89]. This method works in a

continuous state space, but with discretized time.

In addition to real-time requirements, another argument for local planning in a dynamic

environment is that, in most situations, it is impossible to accurately predict trajectories of

observed obstacles to longer time horizons.

Grid-based Search and State-lattice Search

Time-dependent planning is also possible with regular grids [21, 90] and state lattices [91, 92,

93]. The natural idea is to use both space and time discretization. If a robot has limited speed

(and acceleration), a space resolution depends on these limits and a given time step [21]. Due to

the large size of discretized state-time space, methods of this kind are typically used for a local

search [21, 90] or as part of a global search graph that performs time-dependent planning only

within a fixed time horizon around a start state [91, 92].

Global time-dependent motion planning on a regular grid has been achieved using the safe

interval path planning (SIPP) method [22, 80]. In SIPP, to avoid a state-time space explosion,

83

a time is decomposed using a combinatorial decomposition (i.e., each grid cell is multiplied by

the number of disjoint time intervals in which this cell is free). A similar method was proposed

by the author in [23], in which obstacle layers were introduced, such that each i-th obstacle layer

represents the time at which the i-th obstacle leaves a grid cell. In this thesis, safe intervals and

obstacle layers are generalized using an event-based state-time space decomposition and are

applied to a state-lattice search.

Approximate Methods

Finally, methods that solve simplified or modified problems of motion planning in the presence

of moving obstacles can be found. For example, in [94], a hierarchical approach was proposed

that divides the path-planning problem into path planning in a static environment and velocity

planning, which is applied along a static path. This approach falls into a group of methods

referred to as velocity-tuning methods [25, Ch. 7.1].

Other methods avoid motion planning in a dynamic environment by reducing the problem

to reactive collision avoidance. Such an approach has been proposed in [95], where the velocity

obstacle (VO) concept has been introduced. In this concept, assuming that the obstacle motion

model is known, a region of possible collision is represented in the velocity space of a robot,

such that the only decision to be made is to select the velocity that avoids such a region. In

[96] the concept of reciprocal VO has been proposed, which, in addition to VO, assumes that

moving objects are agents utilizing a similar collision-avoidance policy as the robot.

6.3 Event-based State-time Space Decomposition

Dynamic changes in a state space can be modeled by events from the set E = Eobs ∪ Efree
(Fig. 6.5), where:

• Eobs = {e = (s, t)|(s, t) ∈ ST free ∧ (s, t + 1) ∈ ST obs}: a set of events denoting that a

state s became blocked by an obstacle starting from t+ 1 upwards,

• Efree = {e = (s, t)|(s, t− 1) ∈ ST obs ∧ (s, t) ∈ ST free}: a set of events denoting that a

state s became free, starting from t upwards.

For an event, function at(e) : E → T can be defined that returns a time at which the event

occurs. However, it will be convenient to omit atwhen events are used with relation and interval

operators (e.g., e1 < e2 instead of at(e1) < at(e2) and [e1, e2] instead of [at(e1), at(e2)]).

As it moves, a convex obstacle leaves a trace in the workspaceW . For each point p on the

trace, two events can be observed: first, when the obstacle enters point p and, second, when the

obstacle leaves point p. The obstacle trace inW corresponds to a trace in ST obs, such that the

84

x

t

Sobs

STobs,2

STobs,1 STobs,static

eobs,2

efree,2tfree,2

tobs,2

s

Figure 6.5: Sample Events in a State-time Space.

trace in ST obs is bounded along the time dimension by the two aforementioned events (e.g.,

(eobs,2, efree,2) in Fig. 6.5); hence, the following natural observations can be made (Lemma 6.1

and Corollary 6.2).

Lemma 6.1 For each state s ∈ S, the motion of a moving obstacle induces s in S, at least one

pair of events e1 ∈ Eobs and e2 ∈ Efree, such that e2 ≥ e1; hence, (e1, e2) is a time interval in

which a state s is occupied by the moving obstacle.

Corollary 6.2 For a state s ∈ S, there is an event e1 ∈ Eobs, if and only if it is followed by an

event e2 ∈ Efree.

With the event-based notation provided and Corollary 6.2, a safe interval proposed in [22]

can be defined (Definition 6.1).

Definition 6.1 Let s be a state in S. A safe interval of s is an interval [t1, t2], such that

t1 ∈ {0} ∪ {t|(s, t) ∈ Efree} and t2 ∈ {t|(s, t) ∈ Eobs} ∪ {+∞}, for which @e = (s, t) ∈
E , e1 < e < e2.

The sample safe intervals bounded by events are shown in Figure 6.6a. With respect to this

definition, safe intervals correspond to disjoint subsets of ST free; hence, they split ST free into

partitions. Consequently, such a partitioning can be used as a mapping to an abstract graph.

This approach is similar to a cylindrical decomposition (Fig. 6.6b) described in [25, Ch. 7.1];

however, herein cylinders are formed over states, not time.

With the definition of a safe interval, Proposition 6.3 can be given (the proposition was

originally proposed in [22] in a slightly different form and was discussed in [23], yet not

formalized):

85

x

t

STobs,2

STobs,1

STobs,static
eobs,2

efree,2tfree,2

tobs,2

s

tfree,1

tobs,1 eobs,1

efree,1

x

t

STobs,2

STobs,1

STobs,static

a) b)

Figure 6.6: State-time space decomposition methods; sample events and time intervals,
[0, tobs,1], [tfree,1, tobs,2], [tfree,2,+∞], (a) in a state-time space and (b) cylindrical decomposition
[25, Ch. 7.1].

Proposition 6.3 For n convex moving obstacles such that each is moving along Pk path in a

workspaceW , such that ∀i 6= j, Pk[i] 6= Pk[j] (the moving obstacle visits each point along the

path at most once), at least one and at most n+ 1 safe intervals for each state s ∈ S exist.

A sketch of the proof of Proposition 6.3 is given in [22]. The example supporting this

proposition is shown in Figure 6.6a.

From Proposition 6.3, it stands that, for n convex moving obstacles that do not visit any point

in a workspace more than once, a state-time space can be decomposed into n + 1 qualitative

layers that include all safe intervals in ST . This observation has been used in the author’s

previous work [23], in which obstacle layers have been proposed. In this approach, path

planning amid moving obstacles is held in a SI = S×Z space (that is similar to a mode-space

concept [25, Ch. 7.3]) for which φSI(s̃) : ST → SI mapping is defined as follows:

φSI(s̃ = (s, t)) =

(s, argmini(t− ti)) if ∃e = (s, ti) ∈ Efree, ti ≤ t,

(s, 0) otherwise,
(6.2)

where i ∈ {1, 2, . . .} is a moving obstacle number. Obstacle layers, as defined by Eq. 6.2,

are qualitative, such that the 0 layer that begins at time 0 represents all situations before the

presence of any obstacle at any place, and the i-th layer that begins at time tfree, i, represents

all situations immediately after leaving some place by an i-th obstacle.

Both approaches, safe intervals [22] and obstacle layers [23], abstract an original state-time

space to a safe interval graph G, such that nodes of G correspond to safe intervals in ST .

Therefore, each node v ∈ V (G) has labels, interval−(v) and interval+(v), that are the begin

and end times of the safe interval, respectively. The number of nodes in G is |G| = |S| · (n+1),

86

where n is the number of convex moving obstacles, and S is a discretized state space. Two

nodes in G are adjacent only if their safe intervals overlap.

x

t

x

t

STobs,2

STobs,1STobs,1

STobs,2

H G

a) b)

Figure 6.7: A state-time space (bottom) abstracted into (top): a) an acyclic directed graph H
representing points picked from a regular grid embedded in ST , b) an undirected graph G
representing safe intervals; solid, dotted, and dashed lines depict safe intervals of 0th, 1st, and
2nd obstacle layers, respectively.

A sample safe interval graph G is shown in Figure 6.7b, next to an alternative approach

in which an abstract graph H consists of points picked from a regular grid embedded in ST
(Fig. 6.7a), such that the number of nodes in H is |H| = |S| · |T |. As H is an acyclic directed

graph, a linear-time shortest-path search algorithm exists. However, the complexity of such an

approach is O(|S| · |T |), which usually will be higher than O(|G| · log|G|) ≈ O(|S| · log|S|),

which is necessary for the shortest-path search in a safe interval graph G.

6.4 Principles of a Minimum-time Path Search

A motion planning problem in a state-time space is a pair P = (s̃start, sgoal) such that:

• s̃start ∈ ST : a start state in a state-time space,

87

• sgoal ∈ S: a goal state is defined in a state space, not in a state-time space, as the arrival

time is unknown until planning is finished.

A solution for a problem P = (s̃start, sgoal) is as follows:

• Γ̃ = 〈ã1, . . . , ãn〉 is a collision-free plan such that:

– γ−1(ã1) = s̃start,

– ∀i < n, γ(ãi) = γ−1(ãi+1),

– γ(ãn) = (sgoal, tgoal),

• Π̃ = 〈s̃0, . . . , s̃n〉 is a collision-free discrete trajectory such that ∀1 ≤ i ≤ n, 〈s̃i−1, s̃i〉 =

ai ∈ Γ̃.

As this thesis is focused on graph-based motion planning methods, a collision-free discrete

trajectory Π̃ is desired. In graph theory, structures with time-dependent edge costs are referred

to as time-dependent networks. Dean [97] and Foschini et al. [98] provided the complexity

analysis for the shortest-path planning in time-dependent networks. In both cases, FIFO

networks are considered, in which waiting an arbitrarily long time is allowed at any node. In

the case of motion planning in the presence of moving obstacles, waiting at a point along the

path of a moving object will lead to a collision; therefore, such an assumption cannot be made.

Although FIFO networks do not apply to time-dependent planning as defined in this chapter,

graph representations can still be used. For example, the acyclic directed graph, as shown in

Figure 6.7a, is known as a time-expanded network [97] or time-layered graph [98]. In addition,

a safe interval graph (Fig. 6.7b) is a form of time-expanded graph, though it is a qualitative

expansion.

Optimal planning for a search is possible if Bellman’s principle of optimality is fulfilled,

that is, a solution plan is optimal if any partial solution is optimal. After Edelkamp and Shrödl

[54, Ch. 17.2], this property holds for time-dependent planning if a graph is time consistent.

Definition 6.2 The graph is time consistent if, for all time points t1 ≤ t2 and every pair of

actions ã1 = 〈(s1, t1), (s2, t′1)〉 and ã2 = 〈(s1, t2), (s2, t′2)〉, the following relation holds:

t1 + duration(ã1) + t∗(s̃′1) ≤ t2 + duration(ã2) + t∗(s̃′2), (6.3)

where t∗(s) : ST → T returns the shortest time to goal.

In short, it must hold that:

t1 + duration(ã1) ≤ t2 + duration(ã2). (6.4)

In other words, a time-consistency property says that it is impossible to achieve the goal earlier

by starting later. The example of broken time consistency is shown in Figure 6.8.

88

x

t

s1 s2 sgoal

t1

t2

t'2
t'1

Figure 6.8: Example of broken time consistency for actions ã1 = 〈(s1, t1), (s2, t′1)〉 and ã2 =
〈(s1, t2), (s2, t′2)〉, t1 < t2, but t′1 > t′2.

Figures 6.9a and 6.9b depict states corresponding to nodes visited by the minimum-time

trajectory search in a state-time graph (obtained from a regular grid; Fig. 6.7a) and a safe interval

graph, respectively.

x

t

STobs,1

STobs,2

x

t

STobs,2

STobs,1

a) b)

Figure 6.9: The forward breadth-first search: a) in a state-time graph, b) in a safe interval
graph; solid, dotted, and dashed lines depict safe intervals of 0th, 1st, and 2nd obstacle layers,
respectively.

An approach, as proposed in [21], that uses a state-time graph is straightforward. The only

difficulty is to choose a state-space resolution, such that, for a given time step and the maximum

acceleration, each action ã ∈ AT leads to a state that has a corresponding node in a state-time

graph H (i.e., γ(ã) ∈ V (H)). Although in Figure 6.9a the outcome of a BFS is shown, in [21],

A* has been used to reduce the number of visited nodes.

89

6.5 Minimum-time Path Search in a Safe Interval Graph

In this section, the minimum-time path search in a safe interval graph [22, 23, 24] is discussed

from the new perspective of an event-based state-time space decomposition.

A safe interval graph search can be performed using A* [22, 24], any other forward-search

algorithm described in Section 3.2, or dynamic programming described in the algorithm

presented by the author in [23]. However, as a safe interval corresponds to a set of states, the

problem of state-to-node and action-to-edge mapping arises. To deal with this issue, each safe

interval graph node v ∈ V (G) needs to correspond to a single state s̃ = (s, t) ∈ ST (it is labeled

with a state s̃), such that t is the earliest possible time at which a safe interval can be reached.

Graph-node labeling with states is valid only for a particular problem P = (s̃start, sgoal) and

can be obtained by searching that is conducted from a start node labeled with a start state s̃start.

Initially, safe interval graph nodes can be labeled only with safe interval bounds [t1, t2]. Finally,

the following notation will be used to describe a safe interval graph search:

• φG(s̃) : ST free → V (G) is a state-to-node mapping, such that v = φG(s̃) is a graph

node; however, in most cases, it will be omitted,

• g(φG(s̃)), h(φG(s̃)), and f(φG(s̃)) (in short, g(s̃), h(s̃), and f(s̃),) are typical labels used

by A* denoting the cost from the start, the estimated cost to the goal, and their sum,

respectively,

• interval−(φG(s̃)) : V (G) → T (in short, interval−(s̃)) returns a safe interval lower

bound,

• interval+(φG(s̃)) : V (G) → T (in short, interval+(s̃)) returns a safe interval upper

bound,

• s̃min(φG(s̃)) : V (G) → ST free (in short, s̃min(s̃)), the earliest reachable state within

[interval−(s̃), interval+(s̃)] time interval.

A forward-search algorithm (Alg. 3.1), presented in Section 3.2 that can be used for a

safe interval graph search, requires minor modification in a successor expansion loop (i.e.,

instruction s̃min(s̃′) = s̃′ needs to be added between lines 17 and 18 of the algorithm (Alg. 3.1)).

To label a graph node with the earliest reachable state, only the quickest possible actions

need to be used. Let us define ã∗(s̃1, s2) : ST × S → AT , a function that returns the

minimum-time action that leads from s̃1 to (s2, t2) ∈ ST with the minimum time t2 as:

ã∗(s̃1, s2) = argmin
ã=〈s̃1,(s2,t2)〉∈AT

(t2). (6.5)

Clearly, the minimum-time action must obey the velocity limits and acceleration limits (if such

are considered) at any time of its duration.

90

Referring to the car example, only motions at maximum speeds, vmin and vmax, are of

interest; however, these are not always applicable due to the presence of moving obstacles. In

such a case, the only possible solution is to delay a transition to a neighboring state (a graph

node) until it is free. This can be viewed as a robot motion synchronization with a moving

obstacle, in particular, with an event e ∈ Efree. At this point, it will be useful to define an

action-event synchronization function.

Definition 6.3 Event-action synchronization function, sync(s̃1, e) : ST × Efree → AT :

sync(s̃1, e) = argmin
ã=〈s̃1,s̃2〉∈AT ∧t2≥te

(t2), (6.6)

where s̃1 = (s1, t1), s̃2 = (s2, t2) ∈ ST , e = (s2, te) ∈ Efree, such that:

• t1 < te ≤ t2,

• t1, t2 ∈ [interval−(s̃1), interval
+(s̃1)],

• t2 ∈ [interval−(s̃2), interval
+(s̃2)] (i.e., that safe intervals of two adjacent nodes must

overlap),

• duration(sync(s̃1, e)) ≥ duration(ã∗(s̃1, s2)) (i.e., an event-synchronized action cannot

be faster than the fastest action applicable at a state s̃1),

• ∀t∈[t1,t2] ˙̃τ(sync(s̃1, e), t) ∈ [vmin, vmax] (i.e., an event-synchronized action must obey

velocity limits),

• ∀t∈[t1,t2] ¨̃τ(sync(s̃1, e), t) ∈ [amin, amax] (i.e., an event-synchronized action must obey

acceleration limits, if such are considered).

With the definitions given above, an action cost (Eq. 6.7) and a successors set (Eq. 6.8) that

are needed for the shortest-path search can be defined as follows:

cost(ã) = duration(ã), (6.7)

Succ(s̃) = {s̃′ = (s′, t′) ∈ ST free|〈s̃, s̃′〉 = ã∗(s̃, s′) ∨ 〈s̃, s̃′〉 = sync(s̃, e),

e = (s′, te) ∈ Efree ∧ te ≥ end(ã∗(s̃, s′))}.
(6.8)

From Eq. 6.8, we show that successors of a given state are states reached by minimum-time

actions or actions obtained by synchronization with future events.

Now, it must be determined whether actions that are used to generate a successor set

(Eq. 6.8) create a time-consistent safe interval graph. With respect to Eq. 6.4, it must be shown

that there is no action that begins later but ends earlier than any other action.

91

Proposition 6.4 Let G be a directed graph consisting of nodes corresponding to safe intervals.

If the arcs of G are chosen among the minimum-time or event-synchronized actions, the G is

time consistent.

Proof 6.1 Let us consider two actions ã1 = 〈(s1, t1), (s2, t′1)〉 and ã2 = 〈(s1, t2), (s2, t′2)〉, such

that both begin at the same state s1 at two different time points, t1 < t2, and both actions lead

to the same state s2 at time points t′1 and t′2.

Case 1. If both actions are the minimum-time actions, then their durations are equal,

duration(ã1) = duration(ã2); hence, as t1 < t2, it must be that t′1 ≤ t′2.

Case 2. If both actions, ã1 = sync((s1, t1), e) and ã2 = sync((s1, t2), e), are synchronized

with a future event e, then, by definition (Eq. 6.6), t1 = t2 = argminã=〈(s1,·),(s2,t′)〉∈AT ∧t′≥te(t
′).

Case 3. Let ã1 = sync((s1, t1), e) be the action synchronized with a future event e and

ã2 = ã∗((s1, t2), s2) be the minimum-time action. By definition (Eq. 6.6), e ∈ Efree, and thus

from Corollary 6.2, there must be an event e′ = (s2, t
′
e) ∈ Eobs such that {(s2, t′)|t′ ∈ (t′e, te)} ⊆

ST obs. Hence:

3.1. if t′2 ≥ t′1, the time consistency is preserved,

3.2. if t′e < t′2 < te, it means that action s̃2 leads to a collision,

3.3. if t′2 ≤ t′e, then action s̃2 leads to a different safe interval than action ã1 (i.e., φG(γ(ã1)) 6=
φG(γ(ã2))). If so, there must be another action ã3 = 〈(s1, t1), (s2, t3)〉, such that

φG(γ(ã2)) = φG(γ(ã3)), for which Case 1 or Case 3.1 applies.

�

6.6 Action-event Synchronization for Mobile Robot Motion

Planning

A calculation of an event-synchronized action (Eq. 6.6) is a local planning problem of itself.

However, with additional assumptions, it can be simplified, making global safe interval planning

tractable. It is a common technique to pre-compute motion primitives (e.g., arcs of a state lattice

[50, 18]) considering kinematic constraints. Thus, in this dissertation, it is proposed to reuse

such motion primitives and synchronize them with events. Throughout this section, two types

of actions (motion primitives) will be distinguished:

• non-temporal action (non-temporal motion primitive), a, that is, a continuous path in the

configuration space represented by τ(a, p), with a distance function returning its length,

92

namely:

distance(a) =

1∫
0

τ(a, p) dp (6.9)

• temporal action (temporal motion primitive), ã, that is, a continuous trajectory in the

state-time space represented by τ̃(ã, p) being an outcome of a non-temporal action

synchronization.

In the remainder of this section, a few forms of an action-event synchronization that are useful

for mobile robot motion planning are discussed.

6.6.1 Simple Action-event Synchronization

We assume that a function a∗(s1, s2) : S × S → A returns a minimum-time action in a static

environment, which is defined as follows:

a∗(s1, s2) = argmin
a=〈s1,s2〉∈A

(duration(a)). (6.10)

An event-synchronized action can be viewed as a protraction of the minimum-time

action, such that the event-synchronized action lasts longer than the minimum-time action,

duration(sync((s1, t1), (s2, te))) ≥ duration(a∗(s1, s2)), without changing a motion primitive

(i.e., the path in S is unchanged).

In the simplest case, the event-synchronization function can be defined as:

sync(s̃1, e) = 〈s̃1, e〉 |te ≥ t1 + duration(a∗(s1, s2))∧

distance(sync(s̃1, e)) = distance(a∗(s1, s2)),
(6.11)

where s̃1 = (s1, t1) ∈ ST and e = (s2, te) ∈ Efree (Fig. 6.10). From Eq. 6.11 it follows that:

te − t1 ≥ duration(a∗(s1, s2)), hence

distance(sync(s̃1, e))

te − t1
≤ distance(a∗(s1, s2))

duration(a∗(s1, s2))

distance(sync(s̃1, e))

te − t1
≤ vmax.

(6.12)

Therefore, an action returned by Eq. 6.11 preserves velocity limits.

93

t2

t1 x

t

s1 s2

Figure 6.10: Example of an action-event synchronization, where a dashed arc denotes
minimum-time action, a solid arc denotes synchronized action, and thick vertical lines (both
solid and dotted) denote safe intervals considered in the synchronization.

6.6.2 Simple Action-event Synchronization for Long Actions

Typically, a state lattice includes motion primitives that are longer than a state-lattice resolution.

A simple synchronization applied to a long motion primitive may produce an action, ã =

〈s̃1, s̃2〉, that leads to a collision, as shown in Figure 6.11a, even though, from Definition 6.3, the

following holds: t1, t2 ∈ [interval−(s̃1), interval
+(s̃1)]∧t2 ∈ [interval−(s̃4), interval

+(s̃4)].

Furthermore, in some cases (for example, Fig. 6.11b), the overlapping condition of the safe

intervals is too restrictive; therefore, it needs to be generalized.

x

t

s1 s2 s3 s4

x

t

s1 s2 s3 s4

ts4
-,t4

t1
ts1

-

ts1
+,ts4

+

ts1
+

t1
ts1

-

ts4
+

ts4
-,t4

a) b)

Figure 6.11: Example of a failed action-event synchronization: a) although safe intervals of s̃1
and s̃4 states overlap, the synchronization leads to the collision in the mid-states; b) although
safe intervals of s̃1 and s̃4 states do not overlap, the synchronization is collision-free. Dashed
arcs denote minimum-time actions, solid arcs denote synchronized actions, and thick vertical
lines denote safe intervals considered in the synchronization.

As a motion primitive runs nearby state-lattice nodes (states), it can be represented as a

sequence of states Pã = 〈s̃1, . . . , s̃k〉, which next can be mapped to a path in a safe interval

94

graph. It can be proposed that a long motion primitive, ã, is a collision-free path in a safe

interval graph if the following holds:

∀s̃i,s̃i+1∈Pã
ti, ti+1 ∈ [interval−(s̃i), interval

+(s̃i)]

∧ ti+1 ∈ [interval−(s̃i+1), interval
+(s̃i+1)].

(6.13)

Although with the condition in Eq. 6.13 the synchronization examples shown in

Figures 6.11a and 6.11b are resolved properly, the condition is still restrictive. For example,

in the situation shown in Figure 6.12, it will not allow for synchronization between states s̃1
and s̃3. However, the search for a solution of more elaborate problems can be part of a global

search. The exemplified problem is possible to solve, if a state lattice includes motion primitives

of a lattice resolution length.

x

t

s1 s2 s3

Figure 6.12: Sample situation in which a simple action-event synchronization cannot be applied.
Synchronization between s̃1 and s̃3 is impossible with respect to Eq. 6.13; however, a solution
can be found if a state lattice includes shorter motion primitives.

6.6.3 Action-event Synchronization with Acceleration Limits

To check whether an action returned by Eq. 6.11 preserves acceleration limits, we consider the

worst case in which a robot moving at the maximum speed must stop to avoid a collision with

a moving obstacle. If this is part of the minimum-time path, once the collision is avoided, the

robot should achieve the maximum speed as soon as possible, that is, at time te. If a control

input has a bang-coast-bang profile (i.e., it is a sequence of input controls 〈amin, 0, amax〉)[21],

the duration of this action can be calculated as follows:

duration(sync(s̃1, e)) =
vmax
amin

+
vmax
amax

+ twait, (6.14)

95

where twait is a time of in-place waiting, which is necessary to synchronize with te. Then, the

traveled distance is calculated as follows:

distance(sync(s̃1, e)) =
v2max
2amin

+
v2max
2amax

. (6.15)

If distance(sync(s̃1, e)) <
v2max

2amin
, the robot will not have enough distance to stop; hence, s̃1

is in the inevitable collision region. If v2max

2amin
≤ distance(sync(s̃1, e)) <

v2max

2amin
+ v2max

2amax
, the

robot will not achieve the maximum speed at time te; hence, such an action cannot be part of

the minimum-time path.

In the general case, it is possible to preserve acceleration limits along an event-synchronized

action if it is constructed from a motion primitive, a∗(s1, s2), of a length greater than the distance

required for stopping from and accelerating to the maximum speed, that is:

distance(a∗(s1, s2)) ≥
V 2
max

2decmax
+

V 2
max

2accmax
. (6.16)

If a state lattice includes such motion primitives, it can be used for minimum-time motion

planning in a safe interval graph.

The discussion on acceleration limits given in this section is under the assumption that

safe interval graph nodes are decomposed only with respect to space and time intervals (i.e.,

it is assumed that at each node a robot has the maximum velocity). However, it is possible to

construct a safe interval graph that is decomposed with respect to the space, time intervals, and

velocity. Then, acceleration limits can be considered in a global search by avoiding connections

between nodes that would require infeasible accelerations.

6.6.4 Action-event Synchronization with Cost-map Constraints

An action-event synchronization becomes complicated if speed constraints imposed by a cost

map are considered. As proposed in Section 6.1, a cost map provides a function cm(s̃ = (s, t))

that returns a value from 0 to 1. This value is used to reduce the maximum speed that is

applicable at a given state, at a given time point (Eq. 6.1). If a cost map is defined for a

static map, for a basic motion primitive a∗(s1, s2) that is used for an event-synchronized action

generation, the following holds:

distance(a∗(s1, s2))

duration(a∗(s1, s2))
= cm(s1) · Vmax, (6.17)

96

hence (as in Eq. 6.11)

distance(sync(s̃1, e))

te − t1
≤ distance(a∗(s1, s2))

duration(a∗(s1, s2))

distance(sync(s̃1, e))

te − t1
≤ cm(s1) · Vmax.

(6.18)

Thus, an event-synchronized action preserves velocity constraints provided by a static cost map.

Difficulties arise when a cost map is defined in the neighborhood of a moving obstacle. The

cm function is supposed to return a 0 value at the boundary of a moving obstacle region and to

return values increasing proportionally to the distance from a moving obstacle at a given time

point (i.e., cm(s̃ = (s, t)) ∝ distance(s,ST obs(t))). Then, for a point in ST that is at the

boundary of an obstacle region, the maximum allowed speed is equal to zero. If such a point

is an event with which the action ought to be synchronized, a simple synchronization function

(Eq. 6.11) cannot be used, as the end time of such an action would be obviously greater than the

event time, t2 =∞ > te. Therefore, for the minimum-time planning with cost-map constraints,

another synchronization function must be defined, one that returns an action with an end time t2
that is greater than te but is also the earliest achievable. This can be obtained by a local search

in a regular grid (with fixed time and space steps) spanned along a motion primitive that is used

for synchronization (Fig. 6.13).

x

t

s1 s2

Figure 6.13: Example of an action-event synchronization as a local search, where a dashed arc
denotes minimum-time action (to be synchronized), solid arcs denote local actions, and thick
arcs denote the trajectory of a synchronized action.

97

6.7 Variants of a Time-dependent Heuristic Search

6.7.1 Real-time Planning

Real-time planning refers to problems in which planning is interleaved with acting and the time

allocated for planning is limited. The problem of real-time searching and acting was originally

formulated by Korf [14], who proposed the learning real-time A* (LRTA*). For a survey on

real-time planning, also called the agent-centered search, refer to [99] and [54, Ch. 11].

In a real-time search, if the time provided for planning is over, which usually happens before

a global solution is found, a search algorithm is stopped, and the best action based on the search

tree explored to that point is performed by an agent. Typically, the best action is the one that

minimizes the cost to the goal (Eq. 6.19).

argmin
a∈A|γ(a)∈Succ(scurrent)

(cost(a) + h(γ(a))) (6.19)

The main scheme for a real-time search is shown in Algorithm 6.1. It consists of four steps:

1) local search-space generation (performed as forward BFS, Dijkstra, or A*; e.g., Alg. 3.1), 2)

heuristic values update (the learning step), 3) action selection (Eq. 6.19) and 4) action execution.

Since the real-time search performs only a local search, there is a risk of the agent being trapped

Algorithm 6.1 Main procedure common for real-time algorithms.
1: function REAL-TIMESEARCH(sstart, sgoal, lookahead)
2: while sstart 6= sgoal do
3: LSS ←SEARCH(sstart, sgoal, lookahead) . LSS: local search space
4: H-VALUEUPDATE(LSS)
5: a =ACTIONSELECTION(sstart)
6: sstart = γ(a)

in a local minimum. In general, the learning step prevents that if and only if there are no states

with an infinite cost to the goal. Roughly speaking, there are no traps. Such a search space is

called ‘safely explorable’, for which the real-time algorithm is guaranteed to find the solution

[54, Ch. 11].

Except for the third step, all steps may be time-consuming. A performance improvement can

be achieved by providing a better heuristic (improving Step 1) or by speeding up the learning

step (Step 2). In the original version of LRTA* [14], a heuristic value update is performed only

for the current state of an agent, such that a new heuristic is calculated as follows (Eq. 6.20):

h(s) = max
(
h(s), min

a∈A|γ(a)∈Succ(s)

(
cost(a) + h(γ(a))

))
. (6.20)

98

In the LRTA* version presented in [54, Ch. 11], the heuristic value update (Alg. 6.2) is

implemented as dynamic programming, where Eq. 6.20 is Bellman’s equation. With such

an implementation, if the value update step is conducted until convergence, it has O(n2)

complexity. Otherwise, the calculated heuristic values remain admissible but converge more

slowly. Regardless of the method, heuristics learned by LRTA* eventually converge to accurate

values.

Algorithm 6.2 LRTA* heuristic value update.
1: function LRTA*-H-VALUEUPDATE(LSS)
2: for each s ∈ LSS do
3: temp(s) = h(s)
4: h(s) =∞
5: while {s ∈ LSS|h(s) =∞} 6= ∅ do
6: sn = argmins∈LSS max

(
temp(s),mina∈A|γ(a)∈Succ(s)

(
cost(a) + h(γ(a))

))
7: h(sn) = max

(
temp(sn),mina∈A|γ(a)∈Succ(sn)

(
cost(a) + h(γ(a))

))

In [100], Koenig proposed to improve the h value update step using Dijkstra’s algorithm

initialized with nodes left in the open list at the end of the local search. This algorithm has been

formalized as LSS-LRTA* in [70].

Another extreme simplification of the value-update step is used in the real-time adaptive A*

(RTAA*) algorithm [101], in which a new heuristic evaluation is described by Eq. 6.21, where

state smin has the lowest f value among the states from an open list at the end of a local search.

h(s) = f(smin)− g(s) (6.21)

The RTAA* heuristic is well informed (near ideal) for all states lying along the shortest path

from the current state to smin. For all other states, the heuristic is still admissible, but is less

informative than a heuristic calculated by LRTA*. Moreover, it usually underestimates the cost

to the goal.

Although a learning real-time search seems to be ideal for use in robotics and video games,

LRTA* and its variants have a significant drawback; an agent tends to revisit the same states

of the search space multiple times, which is necessary to escape local h value depression. This

effect, which is also called a “scrubbing behavior,” has already been reported by Korf [14]. The

recent findings strongly suggest that scrubbing is unavoidable [102]. However, it is possible to

reduce this effect using better basic heuristics.

99

Real-time Planning in a Safe Interval Graph

Real-time search algorithms are designed to perform planning in a limited time; hence, they are

well suited to mobile robot motion planning in a dynamic environment. In this section, how the

algorithms of this class apply to time-dependent planning will be investigated, specifically, to a

safe interval graph search.

There are two aspects of concern. First, a search space for real-time planning must not

include states with an infinite cost (it must not include traps). In the case of time-dependent

planning in the presence of moving obstacles, such states are well recognized. They form

inevitable collision regions in a state-time space, which has been thoroughly discussed by [35]

and explained in Section 6.1. Second, as real-time algorithms conduct only a local search,

to assure completeness, they utilize heuristic learning. However, it is not clear whether such

heuristics are admissible when used for time-dependent planning.

Typical heuristic learning rules (e.g., LRTA* or RTAA*) assume that the h value can only

grow (Eq. 6.20). In the dynamic environment case, it means that once the h value is increased

due to an event occurrence, it will not change even after the event has elapsed. For example,

if the robot encounters a dynamic obstacle at some space (a graph node), it will remember

increased heuristics permanently; thus, it will visit all nodes with lower h values, even if the

actual heuristic cost to the goal is decreasing with time. Such a situation is shown in Figure 6.14.

After an initial local search (Fig. 6.14a), that discovers an obstacle region, ST obs, h values are

updated in accordance with Eq. 6.20 (Fig. 6.14b). If these h values are applied to states explored

during a new search (after transition from s1 to s2), the f values will overestimate the total cost

(Fig. 6.14c). Therefore, for time-dependent planning, a proper learning rule was proposed by

the author in [34] (i.e., instead of h value updates, the lower bound on the f value, fmin(s),

should be updated):

fmin(s) = max
(
fmin(s), min

a∈A|γ(a)∈Succ(s)

(
g(s) + cost(a) + fmin(γ(a))− g(γ(a))

))
. (6.22)

With the learning rule defined by Eq. 6.22, f value calculation used in a local search is expressed

as follows:

f(s) = max
(
g(s) + hstatic(s), fmin(s)

)
, (6.23)

where hstatic(s) is an ideal heuristic calculated by a backward search in a static environment.

The example of the f value calculated using Eq. 6.23 is shown in Figure 6.14d.

Transforming Eq. 6.23 into form of Eq. 6.24, the heuristic is not constant and depends on

g(s), which indirectly entails time dependency. Such a relationship is characteristic for planning

100

s1

x

t

STobs

x

t

x

t

STobs

x

t

STobs

f

f f

a) b)

c) d)

sgoal sgoal

sgoalsgoal

s1 s1

s2s3

fmin

h

s1s2s3

t1

t1
t2

t1
t2

Figure 6.14: Heuristic learning in real-time planning in a safe interval graph: a) an initial search
starting from (s1, t1) (ST obs is unknown), b) a heuristic learned in accordance with Eq. 6.20
(dashed line denotes an initial heuristic), c) a consecutive search (after the transition from s1 to
s2) with f(s) = g(s) +h(s), (f(s1) and f(s3) are overestimated), d) a consecutive search (after
the transition from s1 to s2) with f(s) = max

(
g(s) + h(s), fmin(s)

)
. Thick solid arcs denote

actions, thick solid lines denote f or h values, and dashed arcs denote the estimated shortest
paths to the goal.

in a dynamic environment.

f(s) = g(s) + max
(
hstatic(s), fmin(s)− g(s)

)
(6.24)

The difference between the fmin-value update and the h-value update is noticeable if the initial g

value grows with subsequent planning iterations. Otherwise, if the g value is always initialized

with the same value (in the example 0), then the two update rules are equivalent.

The proposed learning and heuristic calculation rules (Eq. 6.22 and Eq. 6.23) are correct

under the strong assumption that the ideal static heuristic, hstatic(s), is provided. It is also

possible to combine both learning rules (Eq. 6.22 and Eq. 6.20), as long as it is possible to

101

distinguish static and moving obstacles. Then, the f value should be calculated as follows:

f(s) = g(s) + max
(
hbasic(s), hstatic(s), fmin(s)− g(s)

)
, (6.25)

where hstatic is learned with Eq. 6.20, fmin is learned with Eq. 6.22, and hbasic is a basic heuristic

used for nodes that has not been explored before (for example, it can be a time to goal of

movement along a straight line at the maximum speed).

6.7.2 Anytime Time-dependent Planning

The anytime version of planning in a safe interval graph has been discussed in [103]. The

authors pointed out that using ARA* (Alg. 5.1) for a safe interval graph search is incomplete.

This is shown in Figure 6.15. As ARA* does not reopen closed nodes, it may fail to find a

x

t

STobs,2

STobs,1

sclosed

Figure 6.15: A sample problem in which ARA* may fail to find a solution. Due to the use
of an inflated heuristic, a state sclosed has been expanded and closed with a high g value.
Unfortunately, there is no further motion from that state. Light gray arcs depict a proper solution
that cannot be found, as a state sclosed cannot be reopened.

solution in problems in which actions are feasible only if executed at an early stage (from a

state with the lowest possible cost), for example, when batteries are still loaded enough or there

is enough time to perform an action. However, such a discussion is limited to ARA*. Any other

algorithm that allows for state reopening (e.g., ANA* or A* with an overestimated heuristic) is

complete when used with a safe interval graph.

6.8 Experimental Results

In this section, the results of a minimum-time path search in a safe interval graph with a

simple action-event synchronization are presented. Path planning was conducted using the A*

102

algorithm running forward in a fully-known environment (i.e., static obstacle positions) and

moving obstacles trajectories were known.

Each single test scenario begins with planning on a map without moving obstacles, which

will be called the 0-th run. The next path-search run for another robot is performed on the

same map; however, the next robot must avoid collision with a robot moving along a trajectory

planned in the preceding run. The same scheme was continued up to 50 runs, such that, in each

i-th run, i-th robot avoids collision with all robots with trajectories planned in all preceding

runs.

Planning in such a scenario was performed on 512x512 sized maps from wc3, rooms, and

mazes_16 map sets [72] (Fig. 4.5), such that at least 10 different maps from each map set were

used. The robots had a radius of five map cells, which gives traces in a configuration space

that are 10 map-cells wide. Each robot had to travel a path that was at least 400 map-cells

long, starting at time 0. A search space was a 16-connected 2D grid with inflated travel costs in

the vicinity of static obstacles. The dynamic obstacle regions in the C-space were not inflated;

hence, the borders of such regions were sharp. A sample result of motion planning for 51 robots

on a battleground map from the wc3 map set is shown in Figure 6.16.

The average values of parameters logged during all scenario runs are presented in Table 6.1.

The average planning time in a function of the number of moving obstacles is shown in

Figure 6.17. The main observation that can be made in this particular benchmark is that planning

time with the presence of one moving obstacle is about two times longer than the planning time

without moving obstacles, despite the similar average number of search steps. The planning

time is clearly doubled due to an additional layer of a search space. The plots presented in

Figure 6.17 suggest that planning time is growing linearly with the number of moving obstacles

in the environment.

6.9 Conclusions

In this chapter, an event-based state-time space decomposition for motion planning among

moving obstacles has been proposed. With two types of events, when a moving obstacle

enters and when it leaves a point of a robot workspace, it is possible to obtain other

search-space representations, such as safe intervals proposed in [22] or obstacle layers proposed

in the author’s previous work [23]. Then, motion planning among moving obstacles can

be considered an action-event synchronization problem. An action-event synchronization

(Sec. 6.6) that assumes arbitrarily long action duration protraction has been investigated against

time consistency and feasibility for robot motion planning.

103

a) b)

c) d)

Figure 6.16: A collision-free motion of 51 robots on a battleground map from the wc3 map set,
at four consecutive stages (a, b, c, and d), where white fields are a free space, circles are robots,
and lines are traveled paths.

In general, heuristic search methods can be used for a minimum-time path search in safe

interval graphs; however, the following conditions must be fulfilled. A search algorithm needs

to memorize the full state of a robot (i.e., state and time point) alongside of each safe-interval

graph node. If a heuristic search is used, it is important to pop nodes from an open list in a

lexicographical f, g ascending order. Finally, a search algorithm needs to allow for reopening

nodes; therefore, algorithms based on ARA* cannot be directly used for planning in a safe

104

Table 6.1: The average experimental results for a minimum-time path search in a safe interval
graph using A*; #Mov.Obst.: number of moving obstacles, Tp: planning time [ms], #S.Steps:
number of search steps, #Heap: number of heap operations, #Succs: number of iterations over
successors, P. Cost: path cost [map cells].

Map set #Maps used #Mov.Obst. Tp #S.Steps #Heap #Succs P. Cost

rooms

30 0 222.87 78520 269444 78520 617.319
30 1 382.67 85574 288480 85574 621.539
30 2 386.77 80745 268553 80745 629.534
30 5 474.83 81804 266366 81804 628.044
30 10 637.84 81897 256587 81897 627.590
30 20 1151.16 108650 314137 108650 673.179
30 50 2748.65 147382 382062 147382 767.307

wc3

36 0 82.04 28488 99537 28488 463.262
36 1 163.94 34716 118284 34716 465.254
36 2 174.11 33803 113654 33803 465.843
36 5 246.32 39740 125999 39740 482.181
36 10 435.35 53779 161056 53779 498.705
36 20 722.71 62262 171799 62262 518.894
34 50 1831.44 90208 221978 90208 587.775

mazes_16

10 0 75.22 26694 89857 26694 484.329
10 1 170.70 36876 120942 36876 542.923
10 2 159.17 31651 103481 31651 539.778
10 5 185.73 33788 107583 33788 553.290
10 10 254.32 38006 114149 38006 591.769
10 20 465.07 48359 131945 48359 699.647
10 50 1179.81 66472 167795 66472 927.526

interval graph. Heuristic improving algorithms, such as LRTA* or RRTA*, can be used for

planning in a safe interval graph; however, the heuristic learning needs to be modified to

preserve optimality.

An event-based approach with a simple action-event synchronization was implemented and

tested. The tests covered the use of A* for robot motion planning among moving obstacles

(up to 50) on a variety 2D maps. The benchmark results suggest that with such state-space

decomposition planning, time grows linearly with the number of moving obstacles.

105

0
20

40
60

80
10

0

N
um

be
r

of
 p

ro
bl

em
s

0 10 20 30 40 50

0
50

0
10

00
15

00
20

00
25

00

Total time

Number of moving obstacles

T
im

e
[m

s]

(maps: rooms)

A*

0
20

40
60

80
10

0

N
um

be
r

of
 p

ro
bl

em
s

0 10 20 30 40 50

0
50

0
10

00
15

00

Total time

Number of moving obstacles

T
im

e
[m

s]

(maps: wc3)

A*

a) b)
0

20
40

60
80

10
0

N
um

be
r

of
 p

ro
bl

em
s

0 10 20 30 40 50

0
20

0
40

0
60

0
80

0
10

00
12

00

Total time

Number of moving obstacles

T
im

e
[m

s]

(maps: mazes_16)

A*

c)

Figure 6.17: Total time for planning amid moving obstacles, for (a) rooms, (b) wc3, and (c)
mazes_16 map sets; in the background, the histogram of problems is plotted in gray.

106

7. Hierarchical Planning in a Dynamic
Environment

In this chapter, hierarchical planning is used for planning in a safe interval graph. Hierarchical

planning aims to speed up searching by solving a simplified problem and using gathered

information to solve the original problem. A background for hierarchical planning is provided

in Section 7.1, in which abstraction hierarchies are explained (Sec. 7.1.1) and algorithms for

hierarchical planning are discussed (Secs. 7.1.2 through 7.1.5), with special attention given to

the Switchback algorithm (Sec. 7.1.4). In Section 7.3, the Switchback algorithm is used for

motion planning in a fully-known dynamic environment. Next, a new Real-time Switchback

algorithm is proposed (Sec. 7.4) that is used for real-time motion planning in an unknown

dynamic environment.

7.1 Hierarchical Planning: Background

Hierarchical planning can be achieved with various techniques, for example, the refinement of a

simplified plan [15, 104, 105, 106] or the use of knowledge from an explored part of a simplified

search space as a heuristic for a search in an original search space [107, 108, 16, 17].

As a search-space simplification is connected with abstraction transformation, in this

section, an abstraction transformation and types of abstraction are discussed first (Sec. 7.1.1).

Next, the algorithms for hierarchical planning are presented (Secs. 7.1.2 through 7.1.5).

7.1.1 Abstraction Hierarchies

In [54, Ch. 4.1], an abstraction transformation is defined as the mapping φ : S → S ′ that

maps each state s ∈ S to an abstract state φ(s) ∈ S ′ and each action a ∈ A to an abstract

action φ(a) ∈ A′. In [15], Holte proposed analyzing existing abstraction transformations using

a graph-oriented perspective. The definition of the abstraction transformation given above is

coherent with the definition of a homomorphism used in graph theory [109]:

107

Definition 7.1 Let G and H be graphs. A function φ : V (G) → V (H) is a homomorphism

from G to H if it preserves edges, that is, if for any edge [u, v] of G, [φ(u), φ(v)] is an edge of

H .

It should be emphasized that, with the homomorphism definition, it is possible to have

φ(u) = φ(v), which induces loops in H (but, typically these are ignored while planning). In

particular, graph H can be a quotient of graph G (Fig. 7.1), which is defined as follows [109]:

Definition 7.2 Let G be a graph and let P = {V1, . . . , V2} be a partition of the vertex set of G

into non-empty classes. The quotient G/P of G by P is the graph whose vertices are the sets

V1, . . . , Vk and whose edges are the pairs [Vi, Vj], i 6= j, such that there are ui ∈ Vi, uj ∈ Vj
with [ui, uj] ∈ E(G). The mapping πP : V (G) → V (G/P) defined by πP(u) = Vi such that

u ∈ Vi, is the natural map forP . (. . .) πP is a homomorphism, if and only if Vi is an independent

set for each i.

Level 0

Level 1

Level 2

Level 3

 φ0,1(V1(G)) φ0,1(V2(G)) φ0,1(V3(G))

V1(G)

 φ2,3(V1(I))

G

H

I

J

abstract spaces

original space

 φ1,2(V1(H)) φ1,2(V2(H))

V2(G)
V3(G)

Figure 7.1: Example of multi-level hierarchy of quotient graphs.

Typically, it is desirable to create an abstraction hierarchy that reduces the search-space

size (the number of nodes and edges); therefore, quotient graphs are commonly used in many

hierarchical planning applications [15, 107, 105, 106, 110].

108

In action planning and motion planning, graph nodes hold some domain-specific labels

(e.g., in action planning it could be a set of predicates, while in 2D motion planning it could be

a robot position in a plane (x, y)). As a quotient graph is constructed using surjective mapping,

the question arises ‘how does this mapping apply to labels?’ Answering this question is not

trivial, and preferable methods differ between domains.

For some domains, it is possible to automatically compute a single abstract label for all

nodes that are mapped to the same abstract node, for example, by calculation of a center of

mass of points in n-dimensional space. Another simple approach is to provide such mapping

φ : V (G)→ V (H) for which V (H) ⊆ V (G) (i.e., all nodes in a partition are represented by one

selected node in this partition preserving its labels, for example, all robot positions in a partition

are mapped to the one selected). In addition, for domains in which attributes are n-tuples

representing points in an n-dimensional metric space, it is possible to construct mapping that

drops one or a few attributes, resulting in points in k-dimensional space, where k < n, which

is merely partitioning. For example, a three-dimensional motion planning problem, in which

q = (x, y, z), can be simplified to a two-dimensional motion planning by dropping the z

coordinate. This is a common method used for kinodynamic motion planning [60, 11, 18],

in which a heuristic search held in a state space, in which s = (x, y, ẋ, ẏ) is sped up using a

heuristic computed by a search in a 2D grid in which q = (x, y). As shown in Section 7.2,

this method can also speed up time-dependent planning, in which a static environment (without

moving obstacles) can be considered an abstraction of a dynamic environment.

7.1.2 Refinement Planning

It is a natural approach to start planning in an abstract graph. Next, an abstract path needs to be

refined at each lower abstraction level, down to an original space (Fig. 7.2b). An abstract path

can be represented as a sequence of edges (edge path) or as a sequence of nodes (node path). In

[15], it has been shown that the node-path refinement is a better technique since abstract nodes

can be connected by more than one edge.

Although refinement planning is performed in a top-down manner, a path-planning problem

is typically defined in an original search space. Therefore, unless there is a straightforward

mapping to the topmost abstraction level, a refinement algorithm commences with an ascending

phase that tries to reach the topmost level, or the level with the first common ancestor (Fig. 7.2a).

A particular partition of an original graph G has a crucial effect on the efficiency of

refinement planning. In the worst case, it may happen that an abstract path cannot be refined

in an original graph. Such a situation is shown in Figure 7.3, in which the problem is to find a

109

G

H

sstart,G
sgoal,G

sstart,H

sgoal,H

 φG,H(sstart,G) φG,H(sgoal,G)

G

H

sstart,G
sgoal,G

sstart,H

sgoal,H

a) b)

Figure 7.2: Example of refinement planning: a) ascending to find the topmost abstraction level
and abstract planning, b) abstract path refinement at the original level.

path from astart to cgoal. In H , path PH =< v1, v3 > is found, which needs further refinement.

Moreover, PH corresponds to PG =< d, e > in G. As set V3 contains nodes cgoal and e that are

not adjacent, there is no path to cgoal that could contain e. Therefore, the algorithm needs to step

back in the hierarchy to find another abstract path without a {v1, v3} edge. In contrast to this

example, a refinement is called a monotonic refinement if it does not require stepping back in

the hierarchy. In other words, if an abstract path exists, then a path in an original search space

also exists.

G

H

V1 V2

V3

cgoal

d

v1

v2

v3

astart

b

e

Figure 7.3: Example of refinement planning, which is non-monotonic due to the chosen
partitioning.

The classical refinement (monotonic node-path refinement) does not require stepping back

in the hierarchy, but it may provide highly sub-optimal paths [15]. In hierarchical path-finding

110

A* (HPA*)[104], a path sub-optimality is reduced in post processing by path smoothing.

Although this method applies well to grid-based path-finding, it is not general.

Sub-optimality can be significantly reduced with a technique called path marking that uses

an abstract path to reduce the search space at the lower abstraction level (e.g., partial-refinement

A*, PRA*[105, 106]). At a lower level, a search is performed from scratch; however, it is

limited to nodes that belong to abstract nodes along an abstract path.

Alternating search directions, used by the AltO algorithm [20], is another refinement

technique that provides shorter paths than a classical refinement. During a search, the cost from

a start node to each expanded node is calculated; thus, if the search at the lower abstraction

level is performed in an opposite direction, these costs can be used as heuristics. The direction

of a search is altered again, while stepping downwards further. This technique outperformed

classical and path-marking refinement methods in most tests [20]. In fact, alternating search

direction has more in common with planning using abstraction-based heuristics (Fig. 7.4). It

can be viewed as a refinement in the sense that a lower-level search is limited to a search space

explored by the higher level.

7.1.3 Planning with Abstraction-based Heuristics

As already mentioned in the previous section, the solution found in an abstract search space

can be used as a heuristic for the original problem solving. This can be simply implemented as

an A* algorithm that is using a heuristic calculated by an abstract search (e.g., BFS). However,

such an implementation may not provide the expected efficiency gain, which is a subject of

Valtorta’s theorem [54, Ch. 4.2]:

Let u be any node that is necessarily expanded when the problem (s, t) is solved

in S with the BFS. Let φ : S → S ′ be any abstraction mapping, and the heuristic

estimate h(u) be computed by BFS from φ(u) to φ(t). If the problem is solved

by the A* algorithm using h, then either u itself will be expanded or φ(u) will be

expanded.

From the theorem, it stands that the evaluation of a heuristic using a blind search in an abstract

search space may expand as many nodes as the blind search in an original problem search space.

Valtorta’s theorem applies to all aforementioned abstract mapping methods.

The approach described by Valtorta’s theorem has been called a naive hierarchical A* search

[107]. However, it holds only for those hierarchical heuristic search algorithms that (original

and all abstract levels) perform searching in the same direction (forward or backward) at all

levels.

111

Heuristic Caching

A lot of effort has been made to break the so-called Valtorta’s barrier [15, 107, 20], which means

to expand fewer nodes than are expanded by a blind search in the original search space. This has

been achieved with two heuristic caching techniques. As described in [107], during the forward

search from s1 to sg, apart from the cost from s1 to sg, costs from s1 to all other expanded nodes

are also calculated. Moreover, as the path cost h∗ found in the abstract search is known, it can

be used for the heuristic calculation, such that h(s) = h∗ − g(s), which has been referred to as

h∗ caching [107]. Nevertheless, these techniques still require an abstract path for each expanded

node to be found.

To decrease the number of abstract searches, P-g caching has been proposed [107]. With

this technique, an abstract path is calculated only once, providing the abstract path cost P . In

the original space, the heuristic for node s is calculated as h′(s) = P − g(s). In [107], it has

been proven that such a heuristic is admissible. Moreover, for nodes along the path, it is an

ideal heuristic. However, for nodes off the optimal path, P-g caching may produce a heuristic

value lower than the minimal possible value in the given domain d(s) (e.g., the Euclidean

distance for path searching in Euclidean space). Thus, the proper heuristic is calculated as the

max(h′(s), d(s)). In fact, the adaptive A* (AA*) [65] and the real-time adaptive A* (RTAA*)

[101] use P-g caching.

Alternating Search Direction

It has been shown that an alternating search direction is an efficient technique that breaks

Valtorta’s barrier [15, 20]. As already discussed, alternating search direction has been originally

proposed as a top-down refinement method (AltO); however, it can also be used in a bottom-up

manner, where the higher-level abstract planning is performed (and resumed if necessary)

whenever a heuristic at the lower level is required. If a ground-level search performs a complete

search and if a chosen abstraction method ensures admissible heuristics, then such a bottom-up

algorithm is optimal. This approach has been described in [16, 17] as the Switchback algorithm,

which is used in this thesis and will be discussed in Section 7.1.4.

If an abstract search is aimed to provide a heuristic for an original search, the admissibility

of such a heuristic is an important issue to consider. A quotient graph and restriction may

produce inadmissible heuristics, which may lead to sub-optimal solutions, or admissible but less

informed heuristics. Therefore, it is crucial to properly compute abstract edge costs [107, 111].

For example, if abstract nodes represent regions (open subsets of a metric space), an abstract

edge cost can be calculated as cost(V1, V2) = infv1∈V1 infv2∈V2 d(v1, v2). Although a heuristic

computed using a graph with such edge costs will never overestimate the true shortest-path

112

G

H

sstart,G

sgoal,G

sstart,H

sgoal,H
g=0

g=1

f=0+2

g=1g=2

f=1+2

f=2+2

f=1+2

f=2+1

f=2+1

f=3+1
f=3+0

searching backward
from sgoal,H

searching forward
from sstart,G

a) b)

Figure 7.4: Example of alternating search directions in which lower levels use heuristics based
on costs computed by a higher level search conducted in opposite direction.

cost, abstract cost computed using this method may significantly underestimate it, which is

undesirable. (The less informed heuristic that is used, the bigger the number of nodes expanded

by the A* algorithm [3, Ch. 3.6.1].)

Pattern Databases

The heuristics discussed so far are useful for a single-query search. If a search space is initially

known and is of a tractable size, it is possible to pre-calculate the shortest paths between all

pairs of nodes, which can be used as heuristics for a multiple-query search. This approach is

known as a pattern database [112]. Of course, it may be time- and space-consuming; therefore,

abstractions can be used to speed up pattern-database calculation [113, 114]. A True distance

heuristics (TDHs) [108] are similar to pattern databases; however, they are designed to be used

with map-based search spaces.

7.1.4 Switchback: Optimal Bottom-up Search

Switchback [16] is a hierarchical heuristic search algorithm utilizing alternating search

directions. The algorithm allows for searching with multiple levels of search-space abstractions,

such that the search is conducted in a bottom-up manner, where an original search space is the

base level (level 0).

113

A major advantage of Switchback is its simplicity, as it is built upon the A* algorithm.

The main modification in relation to A* is that, in Switchback, a heuristic calculation involves

searching at a higher abstraction level. No less important is that Switchback is optimal if a path

cost at each abstraction level does not overestimate the true path cost [16].

The pseudocode of the Switchback is shown in Algorithm 7.1. The number of abstraction

levels represented by itop is a matter of choice and depends on a particular domain. In addition,

the direction of a search at the base level direction(0) can be freely chosen. It is important that

the search direction is switched between hierarchy levels (Fig. 7.4).

This allows for the use of i + 1-level g values as heuristics in an i-level search (line 11

in Alg. 7.1). Each search level maintains its own open list. As a search direction is changed

between abstraction levels, a neighbor set consists of successors or predecessors for a forward

search and backward search, respectively (lines 31–32 in Alg. 7.1).

If the SEARCH function is called for the first time, for a given level i, then this level needs to

be initialized (line 40 in Alg. 7.1). It is noteworthy that, at the initialization stage, a heuristic for

a start state, sstart,i, is calculated before the state is pushed to an open list (line 26 in Alg. 7.1).

Thus, at the initialization of the base level, the higher-level searches need to be accomplished

(line 10 in Alg. 7.1). From this point on, if a g value of an abstract node that has not been

expanded yet is requested, the higher levels are resumed (lines 10–11 in Alg. 7.1) (i.e., they

continue searching until the requested node is popped from an open list (lines 42–43 and 6–7

in Alg. 7.1)). In this thesis, Switchback has been chosen as the basic hierarchical planning

algorithm.

7.1.5 Optimal Top-down Search

In Switchback, search levels are tightly coupled, that is, lower levels resume higher-level

searches; hence, all search data, such as open lists or closed lists, need to be maintained until

the base level finishes. In contrast to Switchback, AltO, which conducts a search in a top-down

manner, limits the search node expansion to only nodes that have expanded counterparts at

higher abstraction levels [20]. Thus, in AltO, resources required for a higher-level search can

be freed; only g values need to be memorized.

To achieve an optimal top-down search, two main approaches are possible. The first

approach is to continue the search at a higher-level, even though the solution is found, until the

f value at the top of the open list exceeds some multiplicity (overhead) of the optimal solution

length. The second approach is similar to P-g caching, that is, for nodes in which higher-level

nodes were not expanded, it is known that the f value cannot exceed the f value at the top of

the open list calculated at the higher-level, f(φ(s)) ≥ ftop; hence, g(φ(s)) ≥ ftop − h(φ(s)).

114

Algorithm 7.1 Switchback algorithm, where i denotes the abstraction level and i = 0 is the
base level.

1: function SWITCHBACK(sstart, sgoal)
2: if SEARCH(sstart, sgoal, 0) = success then
3: return GETPLAN(sgoal)
4: function KEY(s, i)
5: return g(s)+ HEURISTIC(s, i)
6: function SOLUTIONFOUND(squery,i)
7: return TOPOPEN() = squery,i OR

(
visited(squery,i) AND NOT open(squery,i)

)
8: function HEURISTIC(s, i)
9: if i = itop then return h(s, sgoal,i)

10: if SEARCH(φi+1(sgoal,i), φi+1(s), i+ 1) = success then
11: return g(φi+1(s))
12: else
13: return∞
14: function INITIALIZE(sstart,i, squery,i, i)
15: for each state s ∈ Si do
16: visited(s) = false
17: parent(s) = NULL

18: if direction(i) = forward then
19: sstart,i = φi(sstart)
20: sgoal,i = φi(squery)

21: if direction(i) = backward then
22: sstart,i = φi(squery)
23: sgoal,i = φi(sstart)

24: visited(sstart,i) = true
25: g(sstart,i) = 0
26: PUSH(open_listi, KEY(sstart,i))
27: initialized(i) = true

28: function SEARCHSTEP()
29: s = TOP(open_listi)
30: POP(open_listi)
31: if direction(i) = forward then children = Succi(s)

32: if direction(i) = backward then children = Predi(s)

33: for all s′ ∈ children do
34: if NOT visited(s′) OR g(s′) > cost(s, s′) + g(s) then
35: parent(s′) = s
36: g(s′) = cost(s, s′) + g(s)
37: if NOT visited(s′) then visited(s′) = true

38: PUSH(open_listi, s′)
39: function SEARCH(sstart,i, squery,i, i)
40: if NOT initialized(i) then INITIALIZE(sstart,i, squery,i, i)
41: while NOT EMPTY(open_listi) AND TOPKEY(open_listi) 6=∞ do
42: if SOLUTIONFOUND(squery,i) then
43: return success
44: SEARCHSTEP()
45: return failure

These two methods can be easily combined, such that a heuristic calculated at the k-th level is

115

calculated as follows:

hk(s) =

gk+1(φ(s)) if φ(s) has been expanded

max(ftop,k+1 − h(φ(s)), hbasic(s)) otherwise.
(7.1)

A heuristic calculated in accordance with Eq. 7.1 is admissible, thus the algorithm allows for

an optimal search. However, such a heuristic function, in most cases, has local minima, which,

in the context of real-time-search algorithms, are called depression regions. Existence of such

regions in a real-time search makes the robot visit the same places multiple times (scrubbing

behavior, see Sec. 6.7.1). An approach discussed in this section can be found in the source

code of the SBPL library[51], in which it aims to speed up a state-lattice search by providing a

heuristic computed as a search in a 2D grid. This approach has been used in [18]; however, to

the author’s best knowledge, it has not been described in detail.

7.1.6 Conclusions

A hierarchical search is a natural method of solving complex planning problems. The methods

discussed in this chapter fall into two categories: refinement planning and planning with

heuristic-based abstractions. Regarding the subject of this thesis, planning with heuristic-based

abstractions, in particular, alternating the search-direction method utilized by the Switchback

algorithm [16] is of interest.

Most hierarchical search methods are used for classical action planning (e.g., STRIPS-like

planning) [20, 115, 116, 16, 17], and path-finding for video games [107, 104, 105, 106]. In the

context of robot motion planning, hierarchical planning is also used, although it is not directly

referred to as such. For example, many mobile robot systems consist of global path planning

and a local search for collision avoidance, which are composed and run in a top-down manner.

In addition, the alternating search-direction method is a common approach in robot motion

planning, that is, a 2D (x, y) grid-search provides a heuristic to speed up the search in a 3D

(x, y, θ) or 4D state lattice [60, 11, 48, 18]. In this chapter, the alternating search-direction

method is used for global optimal and real-time motion planning among moving obstacles.

The planning algorithm consisting of three levels designed for a differential-drive robot will be

presented in chapter 8.

116

7.2 Search Space for Hierarchical Planning in a Dynamic

Environment

A static state space (without moving obstacles) can be considered a homomorphic abstraction

(a quotient graph) of a state-time space, in which moving obstacle regions of ST are omitted;

thus, φ(s̃) : ST → S is a surjective mapping defined as follows:

φ((s, t)) = s, (7.2)

such that (s, t) ∈ ST free ∪ ST obs \ ST obs,static, are mapped to s ∈ Sfree, where ST obs,static is

the region of collision with static obstacles. Hence, the following is proposed.

Proposition 7.1 Let ST be a state-time space that includes static and moving obstacles, and S

be a state space space representing only static obstacles that is obtained using Eq. 7.2. Then,

costs of the shortest paths computed by searching in S can be used as admissible heuristics for

a heuristic shortest-path search in ST .

Proof 7.1 Let ST ′ = S×T be a state-time space without moving obstacles constructed upon a

non-temporal state space S, and ST free = ST \ST obs be a collision-free region of a state-time

space, such that, if there are no moving obstacles in a workspace, then ST free = ST ′free,
where ST ′free ⊆ ST ′. As the presence of moving obstacles can only enlarge ST obs thus shrink

ST free, it must be that ST free ⊆ ST ′free. The same stands for the number of applicable actions

in ST , that is, AT ⊆ AT ′.
Now, let Π′ be the shortest collision-free path in ST ′free connecting some two states. If Π′

is not the collision-free path in ST free, that is, Π′ ∩ ST obs 6= ∅, then the shortest collision-free

path Π in ST free (if such a path exists) cannot be shorter than Π′, as ST free ⊆ ST ′free and no

new shorter actions were introduced to AT . Hence, a cost of the shortest path in ST ′ cannot

be greater than the cost of the shortest path in ST . Therefore, costs of the shortest paths in ST ′

can be used as admissible heuristics for planning in ST . �

In addition to abstractions obtained by omitting moving obstacles, a static state space can

have abstraction levels of itself, for example, an (x, y) grid can be used as an abstraction of an

(x, y, θ) state lattice; hence, multiple abstraction levels are possible.

Among the hierarchical planning algorithms discussed in Section 7.1, the alternating

search-direction algorithms running both top-down [15, 20](Secs. 7.1.2 and 7.1.5) and

bottom-up, such as Switchback [16] (Sec. 7.1.4), can be easily applied to planning within a

hierarchy consisting of static and dynamic search spaces.

117

In this thesis, it is proposed to use an abstraction-based heuristic search to compose

hierarchical planning algorithms consisting of the following algorithms: A*, local A*, D*

Extra Lite, and AD*-Cut (local A* works like LRTA*, but without learning). As robot motion

planning in a dynamic environment requires fast algorithms, in Sec. 7.4 a real-time version of

the Switchback algorithm is proposed. The algorithms are tested within two scenarios: first,

when full trajectories of moving obstacles are known (Sec. 7.3) and, second, when moving and

static obstacles are detected in a certain range around a robot in an incremental search (Sec. 7.4).

7.3 Hierarchical Planning in a Fully-known Dynamic

Environment

In this section, the algorithms using an abstraction-based heuristic are described and evaluated

for motion planning among moving obstacles on a 2D map. The two basic approaches are

compared: a top-down optimal search (as discussed in Sec. 7.1.5) and the Switchback algorithm

(discussed in Sec. 7.1.4), both using the alternating search-direction technique.

A hierarchical search space used in tests consists of a safe interval graph (Sec. 6.5), which

is the base level (level 0), and one abstract level (level 1) representing a 2D map with static

obstacles. As action-event synchronization for planning in a safe interval graph proposed in

Section 6.6 is designed to be used in a forward search, planning at the base level is performed

in that direction, which imposes a backward search at level 1.

The algorithms were tested within the same scenario as described in Section 6.8, that is,

motion planning on 2D artificial maps among moving obstacles, from 0 to 50. The experimental

results are presented in Table 7.1.

In all tests, both Switchback and top-down algorithms were quicker than A*, regardless of

the number of moving obstacles. In total, Switchback was 1.67 times quicker than A*, and

top-down was 1.53 times quicker than A*. In general, the total running times that are shown

in Figure 7.5 suggest that Switchback is the quickest, regardless of a particular map set and the

number of moving obstacles.

In Table 7.1, the number of search steps for hierarchical algorithms is simply the sum

of search steps at both hierarchy levels. Although A* does fewer search steps in total,

all searching is held in a safe interval graph; hence, each successor generation requires an

action-event synchronization with additional computations. The two hierarchical algorithms

do most of the work by a backward search in an abstract space, which is reflected in the

number of predecessor-generation calls (column #Pred in Tab. 7.1). As supposed, with an

abstraction-based heuristic, hierarchical algorithms do significantly fewer steps in an original

118

Table 7.1: Average experimental results for a minimum-time path search in a safe interval
graph; #Mov.Obst.: number of moving obstacles, Tp: planning time [ms], Rp: planning time
performance over A*, #S.Steps: number of search steps, #Heap: number of heap operations,
#Pred: number of iterations over predecessors, #Succs: number of iterations over successors, P.
Cost: path cost [map cells].

#Mov.
Obst.

Algorithm Tp Rp #S.Steps #Heap #Pred #Succs P. Cost

rooms

1
A* 382.67 1.00 85574 288480 0 85574 621.539

Switchback 202.90 1.89 89824 321310 86960 2864 621.539
Top-down 214.52 1.78 88945 318413 84383 4562 621.539

10
A* 637.84 1.00 81897 256587 0 81897 627.590

Switchback 303.31 2.10 99865 350136 87481 12384 627.590
Top-down 306.53 2.08 91155 321721 72411 18744 627.590

50
A* 2748.65 1.00 147382 382062 0 147382 767.307

Switchback 1383.47 1.99 191703 617377 139503 52200 767.307
Top-down 1636.74 1.68 150781 476787 72880 77901 767.307

wc3

1
A* 163.94 1.00 34716 118284 0 34716 465.254

Switchback 99.57 1.65 39883 141298 34815 5068 465.254
Top-down 113.48 1.44 40865 143006 31743 9122 465.254

10
A* 435.35 1.00 53779 161056 0 53779 498.705

Switchback 365.07 1.19 82294 274396 56056 26237 498.705
Top-down 399.54 1.09 71878 234042 31814 40063 498.705

50
A* 1831.44 1.00 90208 221978 0 90208 587.775

Switchback 1550.00 1.18 148829 445090 85280 63549 587.775
Top-down 1703.68 1.07 110009 303925 28713 81296 587.775

mazes_16

1
A* 170.70 1.00 36876 120942 0 36876 542.923

Switchback 85.15 2.00 33985 118585 29924 4061 542.923
Top-down 91.38 1.87 34261 119784 28391 5870 542.923

10
A* 254.32 1.00 38006 114149 0 38006 591.769

Switchback 152.79 1.66 46833 157270 36612 10221 591.769
Top-down 180.99 1.41 45054 150812 28647 16407 591.769

50
A* 1179.81 1.00 66472 167795 0 66472 927.526

Switchback 850.13 1.39 100156 307076 65199 34957 927.526
Top-down 890.83 1.32 77647 228388 31167 46480 927.526

Total Performance Ratio
A*/Switchback 1.67 0.76 0.67 0.00 3.00 1.00
A*/Top-down 1.53 0.89 0.80 0.00 2.11 1.00

space than the A* algorithm. This is depicted in Figure 7.6, in which nodes expanded at the

base level are illustrated.

As a final remark, the superiority of an abstraction-based heuristic search may be even more

pronounced when bucket-like structures are used for open-list maintenance, which is the case

of the SBPL library [51, 18], or when the novel L* algorithm is used [117]. This is likely,

as the number of open-list operations done by hierarchical search algorithms is higher than in

119

0
20

40
60

80
10

0

N
um

be
r

of
 p

ro
bl

em
s

0 10 20 30 40 50

0
50

0
10

00
15

00
20

00
25

00

Total time

Number of moving obstacles

T
im

e
[m

s]

(maps: rooms)

A*
Switchback
Top−down

0
20

40
60

80
10

0

N
um

be
r

of
 p

ro
bl

em
s

0 10 20 30 40 50

0
50

0
10

00
15

00

Total time

Number of moving obstacles

T
im

e
[m

s]

(maps: wc3)

A*
Switchback
Top−down

a) b)

0
20

40
60

80
10

0

N
um

be
r

of
 p

ro
bl

em
s

0 10 20 30 40 50

0
20

0
40

0
60

0
80

0
10

00
12

00

Total time

Number of moving obstacles

T
im

e
[m

s]

(maps: mazes_16)

A*
Switchback
Top−down

c)

Figure 7.5: Total times for planning amid moving obstacles, for (a) rooms, (b) wc3, (c) and
mazes_16 map sets; in the background, the histogram of problems is plotted in gray.

the case of A*; hence, the possible increase in speed will be more pronounced for hierarchical

algorithms.

120

(a) (b)

Figure 7.6: Nodes expanded by A* (a) and Switchback (b) in an original search space (i.e.,
a safe interval graph) with one moving obstacle; obstacle layers are projected onto a 2D grid.
Blue depicts expanded nodes, red depicts a moving obstacle region (ST obs), a thin line denotes
the shortest path, and black denotes static obstacles.

7.4 Real-time Hierarchical Planning in an Unknown

Dynamic Environment

The hierarchical search algorithms discussed in Section 7.1 perform a complete global search.

However, in some cases, such as in video games or robot navigation, it is more important to

act quickly, possibly in real time, than to act optimally. The problem of a real-time hierarchical

search has been addressed by Bulitko [110], in which the path-refinement learning real-time

search algorithm (PR LRTS) has been proposed. The PR LRTS combines path-marking

refinement with an LRTA*, such that the search space of the real-time algorithm is restricted to

a corridor along an abstract path. Such a combination of a global A* with a local LRTS helps

to reduce the scrubbing behavior that is unavoidable in a local search (Sec. 6.7.1).

The PR LRTS, as it relies on path refinement, does not guarantee that a collision-free path

exists in a safe interval graph limited to nodes expanded in a state space representing a static

environment. Therefore, in the following section, a new Real-time Switchback algorithm is

proposed.

121

7.4.1 Real-time Switchback

Switchback resumes searching at a higher level whenever a heuristic is required at the lower

level; therefore, search levels are tightly coupled. Consequently, a lower-level search cannot be

finished until an abstract search is finished.

As a higher-level search may require considerable time to expand a node for which a

heuristic is requested, Switchback is not suitable for motion planning in a dynamic environment

in which decisions need to be made quickly. In this thesis, a new Real-time Switchback

algorithm is proposed, as shown in Algorithm 7.2.

The main modification with respect to the Switchback algorithm is the time limit introduced

to a search loop. A timeout at any level of searching results in termination with failure,

following the current search step (lines 36–37 in Alg. 7.2). In the case of a higher-level timeout,

the only consequence is that infinity is returned instead of the cost to the goal (lines 10–11 in

Alg. 7.2). Regardless of the returned value, lower levels will also terminate immediately, as all

levels need to meet the same time limit.

If a search is terminated before a global solution at the base level is found, it is still possible

to return a partial solution. In fact, this is the usual behavior of real-time algorithms discussed in

Section 6.7.1. Typically, real-time algorithms are designed to select one immediate action, the

action that minimizes the cost to the goal (Eq. 6.19). Herein, it is proposed that the algorithm

returns a local path ending in a state that does not have to be the immediate successor of a

current state but can be selected among all states expanded by the local search (LSS: local

search space):

slocal_goal = argmin
s∈LSS

argmin
s′∈Succ(s)

(cost(s, s′) + h(s′)) . (7.3)

A local-goal selection is conducted only at the base level. It is convenient to select the best

local goal, slocal_goal, during a node expansion following a successor that is pushed to an open

list (lines 23–26 in Alg. 7.2).

A state to be selected for a local goal needs to be safe (line 23 in Alg. 7.2). The notion of a

safe state is domain and problem specific. Herein, in a safe-interval graph search, a safe state

is defined as a state for which no collision with a moving obstacle is possible in the predictable

future. As a local goal is selected, a local path can be reconstructed with the function GETPLAN

from Algorithm 3.1, which is called from lines 8–9 in Algorithm 7.2.

7.4.2 Incremental Real-time Switchback

Real-time algorithms were originally intended to reduce the total mission time that includes both

planning and acting times. In practice, this is hard to achieve. As discussed in Section 6.7.1,

122

Algorithm 7.2 Real-time Switchback algorithm; functions modified with respect to
Algorithm 7.1, where i denotes the abstraction level and i = 0 is the base level.

1: function KEY(s, i) Functions same as in Alg. 7.1
2: function SOLUTIONFOUND(squery,i) . . .
3: function HEURISTIC(s, i) . . .
4: function INITIALIZE(sstart,i, squery,i, i) . . .
5: function REAL-TIMESWITCHBACK(sstart, sgoal)
6: if SEARCH(sstart, sgoal, 0) = success then
7: return GETPLAN(sgoal)
8: else if slocal_goal 6= NULL then
9: return GETPLAN(slocal_goal)

10: else
11: return failure
12: function SEARCHSTEP()
13: s = TOP(open_listi)
14: POP(open_listi)
15: if direction(i) = forward then children = Succi(s)

16: if direction(i) = backward then children = Predi(s)

17: for all s′ ∈ children do
18: if NOT visited(s′) OR g(s′) > cost(s, s′) + g(s) then
19: parent(s′) = s
20: g(s′) = cost(s, s′) + g(s)
21: if NOT visited(s′) then visited(s′) = true

22: PUSH(open_listi, s′)
23: if i = 0 AND ISSAFE(s) AND h(s′) + cost(s, s′) <∞ AND
24: h(s′) + cost(s, s′) < h+local_goal then . A safe local goal
25: slocal_goal = parent(s′) . with lowest h-value is searched for.
26: h+local_goal = h(s′) + cost(s, s′)

27: function SEARCH(sstart,i, squery,i, i)
28: if NOT initialized(i) then INITIALIZE(sstart,i, squery,i, i)
29: if i = 0 then . Initialization of a local goal;
30: slocal_goal = NULL . only at the base level.
31: h+local_goal =∞
32: while NOT EMPTY(open_listi) AND TOPKEY(open_listi) 6=∞ do
33: if SOLUTIONFOUND(squery,i) then
34: return success
35: SEARCHSTEP()
36: if timeout then
37: return failure . A time limit is checked at each search level.
38: return failure

real-time algorithms suffer from scrubbing behavior [102]; thus, they do not provide the

expected increase in speed if an environment is fully known. However, in unknown or partially

known environments, real-time algorithms can be used in the same manner as incremental

search algorithms [70].

The function MAIN presented in Algorithm 7.3 allows the use of Real-time Switchback

for incremental planning. This function is very similar to that of the LRTA* (Alg. 6.1), but

with the functions MAPUPDATE and REINITIALIZE added. In the incremental version of the

123

Real-time Switchback, changes in the environment detected by MAPUPDATE are used in the

reinitialization of algorithms at each level (function REINITIALIZE in Algorithm 7.3).

Algorithm 7.3 Real-time Switchback main function.
1: function MAIN()
2: MAPUPDATE()
3: while sstart 6= sgoal do
4: Π = REAL-TIMESWITCHBACK(sstart, sgoal) . Real-time Switchback returns local path.
5: if Π = ∅ then
6: return failure
7: sstart =ACTIONSELECTION(sstart,Π)
8: MAPUPDATE()
9: H-VALUEUPDATE() . Not necessary in time-dependent planning.

10: REINITIALIZE(sstart, sgoal)
11: function REINITIALIZE(sstart, sgoal)
12: for each level i starting from top do
13: if i-level algorithm is incremental then . E.g., D* Extra Lite, or AD*-Cut
14: REINITIALIZE(φi(sstart), φi(sgoal), i)
15: else
16: RESET(i) . Resetting algorithm to run new search from scratch.

At this point, it is important to note that Switchback can be viewed as a meta-algorithm or

framework that is able to compose algorithms of distinct classes. In this chapter, the following

algorithm compositions are tested: local A* (level 0) with D* Extra Lite (level 1), and local

A* (level 0) with AD*-Cut (level 1). In the final system for mobile robot motion planning in

a dynamic environment (Chapter 8), a three-level hierarchical algorithm consisting of local A*

(level 0) with AD*-Cut (level 1) and A* (level 2) algorithms is used.

H-value Update for Hierarchical Planning in a Dynamic Environment

The improvement of the h value (i.e., function H-VALUEUPDATE in line 4 in Alg. 6.1 and line

9 in Alg. 7.3) is necessary to guarantee the completeness of real-time algorithms. As real-time

algorithms compute a local solution, a robot may get stuck in a local minimum of a heuristic

function. The continual improvement of h values allows an escape from a minimum. However,

if a heuristic function does not include the local minima, a problem of real-time planning

trivializes to the problem of following the h-value gradient descent; then, improvement of the

h value is not necessary. As the improvement of the h value requires additional computation,

such a situation is desirable. It can be shown that, with additional assumptions, Real-time

Switchback used for time-dependent planning does not require improvement of the h value.

Hence, the following is proposed.

Proposition 7.2 Let the state-time space ST be an original (base) search space, and S,

representing a static environment without moving obstacles, such that ∀(s,t)∈ST s ∈ S is an

124

abstract search space. If Real-time Switchback is given enough time to find a safe local

goal and all moving obstacles eventually disappear, then the Real-time Switchback without the

H-VALUEUPDATE function is complete; that is, a robot will eventually achieve the goal state.

The proof for Proposition 7.2 is based on a simple observation that the most reliable strategy

for navigation among moving obstacles is to find a safe place to hide and wait until all moving

obstacles are gone, and then to follow a path to the goal.

Proof 7.2 If a time reserved for a single run of the Real-time Switchback (line 4 in Alg. 7.3)

is long enough to find a safe local goal (line 23 in Alg. 7.2), then the algorithm will provide a

collision-free local path. From this, it also stands that a robot at each iteration of the main loop

(function MAIN in Alg. 7.3) will avoid collision with moving obstacles. Hence, the search space

is safely explorable (i.e., it does not include terminal states or those with no escape), which is a

basic requirement for the use of real-time algorithms.

Now, it must be shown that a heuristic function provided to the base level (level 0) does not

have permanent local minima. In a Real-time Switchback, a heuristic calculated at a higher

level (level 1) is an outcome of a global search starting from the goal state. With respect

to Proposition 7.2, an abstract search space represents the environment, omitting moving

obstacles. Therefore, if all moving obstacles are gone, such a heuristic is ideal (i.e., at each

state, it provides the true cost to the goal); hence, it has only one minimum at the goal state. �

Although the requirements stated in Proposition 7.2 seem to be strong, in practice, they

are possible to fulfill. For example, the parameters of local-search time limit, search-space

resolution, maximal obstacle velocity, and computational power of an onboard computer can

all be empirically adjusted to follow requirements with a reasonable probability of success.

Otherwise, full knowledge of future events and global planning are required, which is a

non-realistic assumption.

7.4.3 Experimental Results

In this section, experimental results of motion planning among moving obstacles using

Real-time Switchback are presented. The experiments were conducted within the same settings

as described in Sections 6.8 and 7.3, for two versions of a Real-time Switchback, namely, local

A* with D* Extra Lite (RT-LA*D*EL, in short) and local A* with AD*-Cut (RT-LA*AD*-Cut,

for short), compared to regular Switchback consisting of A* with D* Extra Lite (A*D*EL, in

short). As RT-LA*AD*-Cut is an anytime algorithm, it requires the initial εinit and εstep, which

were set to 2 and 0.1, respectively.

125

Figure 7.7: Local search space expanded by level 0 of Real-time Switchback (the blue region
with dimmed border) and the local path (thin line).

In the presented tests, the allocated time for real-time search was set to 0.01 s, in which it

was not always possible to find a safe local goal. If such a situation took place, the current

problem was interrupted with failure; therefore, in addition to typical search parameters, the

percent of successfully solved problems was recorded.

In Table 7.2, the results for the two tested algorithms are presented. Additionally, Table 7.2

includes the results of an optimal global search with A* for reference (i.e., the environment

was fully-known). In the context of a real-time incremental search, the ratio of successful runs,

search time per re-planning episode (measured at line 4 in Alg. 7.3), and traveled path cost are

the most interesting factors. In addition, the average number of search steps per re-planning

episode is presented.

Both tested algorithms were able to solve over 70% of problems with 10 (and less) moving

obstacles within the limit of 0.01 s. For higher numbers of moving obstacles, the given time

limit is clearly to small, which can be observed in Figures 7.8a, 7.9a, and 7.10a, in which the

success rate is presented. It is noteworthy that even LA*D*EL, which always performs global

(complete) planning, was not able to solve all problems, which is characteristic for planning

without full knowledge; a robot may encounter an unknown dead-end in which it is impossible

to avoid collision with a moving obstacle.

As RT-LA*AD*-Cut provides an inadmissible heuristic function, in most tests, a robot

controlled by RT-LA*AD*-Cut traveled longer paths. It is interesting that in some cases

(e.g., planning with one moving obstacle in the rooms map set in Tab. 7.2) a robot

126

Table 7.2: Experimental results for the search in a safe interval graph with Real-time
Switchback in an allocated search time of 0.01 s. The presented values are calculated after
solving 10 problems for each number of moving obstacles and each map set.

#Mov.
Obst.

Algorithm Success
rate %

Search Time per
Re-plan. [ms]

#Search
Steps per
Re-plan.

Total
Time [s]

Path
Cost

Median Max.
rooms

1

A* 100 761.24 761.24 98425 0.76 715.963
A*D*EL 100 14.05 78.35 2576 11.19 893.401
RT-LA*D*EL 100 9.36 95.61 944 5.01 883.895
RT-LA*AD*-Cut 80 10.00 32.34 754 4.60 887.567

10

A* 100 1182.32 1182.32 87090 1.18 682.900
A*D*EL 100 34.02 249.58 3991 28.73 912.086
RT-LA*D*EL 80 10.00 106.46 628 6.64 994.764
RT-LA*AD*-Cut 70 10.00 28.90 582 6.70 1006.529

50

A* 100 4351.72 4351.72 150548 4.35 795.086
A*D*EL 100 140.50 1045.95 7444 157.65 1045.531
RT-LA*D*EL 0 NA NA NA NA NA
RT-LA*AD*-Cut 10 10.01 20.47 240 6.84 861.136

wc3

1

A* 100 271.90 0.43 36565 0.27 471.248
A*D*EL 100 10.12 79.52 2596 9.85 702.330
RT-LA*D*EL 90 7.60 78.66 851 4.57 689.384
RT-LA*AD*-Cut 90 8.45 36.23 753 4.23 709.206

10

A* 100 805.92 0.46 66778 0.81 534.240
A*D*EL 100 34.73 351.14 5506 42.82 825.297
RT-LA*D*EL 70 8.72 80.59 632 7.33 774.569
RT-LA*AD*-Cut 70 8.75 33.04 599 8.27 965.616

50

A* 100 2671.00 0.45 83707 2.67 590.485
A*D*EL 100 181.12 1584.75 10569 267.53 985.984
RT-LA*D*EL 22 10.02 74.68 277 15.29 1177.815
RT-LA*AD*-Cut 11 10.01 29.29 339 14.68 1137.998

mazes_16

1

A* 100 224.88 0.39 36876 0.23 542.923
A*D*EL 80 7.71 36.88 1395 12.15 989.813
RT-LA*D*EL 80 6.37 90.42 785 7.87 992.371
RT-LA*AD*-Cut 90 6.65 58.75 753 6.85 990.196

10

A* 100 430.42 0.49 38006 0.43 591.769
A*D*EL 90 19.30 116.32 2997 54.63 1228.366
RT-LA*D*EL 80 8.26 51.04 771 10.81 1193.244
RT-LA*AD*-Cut 90 9.27 35.60 755 11.96 1350.433

50

A* 100 1360.54 0.40 66472 1.36 927.526
A*D*EL 100 143.90 711.21 6873 363.51 1827.447
RT-LA*D*EL 0 NA NA NA NA NA
RT-LA*AD*-Cut 0 NA NA NA NA NA

Total Performance Ratio
A*D*EL / RT-LA*D*EL 2.81 8.18 7.12 8.67 12.40 1.07

A*D*EL / RT-LA*AD*-Cut 2.92 8.08 16.55 9.36 12.29 1.00

127

controlled by LA*D*EL traveled longer paths than the robots controlled by RT-LA*D*EL and

RT-LA*AD*-Cut. This may suggest that global planning in a dynamic environment without

full knowledge may suffer a behavior similar to the “scrubbing” discussed in Section 6.7.1,

that is, a robot explores all areas that may contain the shortest path. In contrast, in Real-time

Switchback a local path is greedily selected upon a heuristic, which seems to be a better strategy

in environments in which multiple paths of similar cost exist.

The median of the search time per single re-planning episode for RT-LA*D*EL and

RT-LA*AD*-Cut is close to the granted time limit. At this point, it should be noted that

the implementations of the tested algorithms are not true real-time. This is reflected by the

maximum search time per single re-planning episode included in Table 7.2. (To obtained a true

real-time, a number of implementation details need to be considered, such as a choice of a data

structure for an open-list maintenance, a memory allocation scheme, and a modification of a

reinitialization in incremental algorithms.) However, in practice, the simple implementation

of Real-time Switchback is sufficient to provide near real-time performance, in contrast to

A*D*EL, for which a search time grows linearly with the number of moving obstacles

(Figs. 7.8b, 7.9b, 7.10b).

To conclude, the results of this benchmark support the claim that Real-time Switchback

provides a good trade-off between optimality (reflected by the traveled path cost) and

computation time (reflected by the search time per single re-planning episode) when used for

planning in a dynamic environment.

0
20

40
60

80
10

0

N
um

be
r

of
 p

ro
bl

em
s

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Success rate

Number of moving obstacles

S
uc

ce
ss

(maps: rooms)

A*D*EL
RT−LA*D*EL
RT−LA*AD*−Cut

0
20

40
60

80
10

0

N
um

be
r

of
 p

ro
bl

em
s

0 10 20 30 40 50

0
50

10
0

15
0

20
0

Median search time

Number of moving obstacles

T
im

e
[m

s]

(maps: rooms)

A*D*EL
RT−LA*D*EL
RT−LA*AD*−Cut

a) b)

Figure 7.8: Results of hierarchical real-time search amid moving obstacles, for the rooms map
set; in the background, the histogram of problems is plotted in gray.

128

0
20

40
60

80
10

0

N
um

be
r

of
 p

ro
bl

em
s

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Success rate

Number of moving obstacles

S
uc

ce
ss

(maps: wc3)

A*D*EL
RT−LA*D*EL
RT−LA*AD*−Cut

0
20

40
60

80
10

0

N
um

be
r

of
 p

ro
bl

em
s

0 10 20 30 40 50

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Median search time

Number of moving obstacles

T
im

e
[m

s]

(maps: wc3)

A*D*EL
RT−LA*D*EL
RT−LA*AD*−Cut

a) b)

Figure 7.9: Results of hierarchical real-time search amid moving obstacles, for the wc3 map
set; in the background, the histogram of problems is plotted in gray.

0
20

40
60

80
10

0

N
um

be
r

of
 p

ro
bl

em
s

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Success rate

Number of moving obstacles

S
uc

ce
ss

(maps: mazes_16)

A*D*EL
RT−LA*D*EL
RT−LA*AD*−Cut

0
20

40
60

80
10

0

N
um

be
r

of
 p

ro
bl

em
s

0 10 20 30 40 50

0
20

40
60

80
10

0
12

0
14

0

Median search time

Number of moving obstacles

T
im

e
[m

s]

(maps: mazes_16)

A*D*EL
RT−LA*D*EL
RT−LA*AD*−Cut

a) b)

Figure 7.10: Results of hierarchical real-time search amid moving obstacles, for the mazes_16
map set; in the background, the histogram of problems is plotted in gray.

7.5 Conclusions

In this chapter, hierarchical search algorithms were investigated against usability for motion

planning among moving obstacles. Specifically, the alternating search-direction technique

utilized by the Switchback algorithm [16] was implemented and tested. In Section 7.2, an

abstraction hierarchy for an optimal hierarchical search in a state-time space was proposed. The

experimental results of planning with the proposed abstraction hierarchy supports a proposition

129

that a search in a search space without moving obstacles provides an admissible heuristic for

a search in a state-time space. The proposed approach to hierarchical planning in a dynamic

environment is then extended to a real-time incremental search, for which a new Real-time

Switchback algorithm is proposed. As Switchback and Real-time Switchback can be viewed

as a general framework for an abstraction-based hierarchical search, it was possible to obtain

two variants of the Real-time Switchback for a real-time incremental search, namely, the

combination of local A* with D* Extra Lite and a combination of local A* with AD*-Cut.

Both algorithms were tested, reaching the conclusion that both can be used for real-time motion

planning among moving obstacles in an unknown or partially known environment.

130

8. Hierarchical Motion Planning in a
Dynamic Environment for a Mobile
Robot

In this chapter, the algorithms and methods presented in Chapters 4 through 7 are applied to

a practical problem of mobile robot motion planning in a dynamic environment. Specifically,

motion planning for differential-drive robots (which have a simple mechanical construction)

working in dynamic indoor environments is considered. The testing setup is developed in the

Robot Operating System (ROS) [118], the software framework that provides the inter-process

communication mechanisms, robotic simulators (Stage and Gazebo), drivers for many devices

used in robotics, and the typical algorithms necessary for robot navigation. The tests were

conducted in the dynamic scenario developed in the Stage simulator.

In Section 8.2, the developed system overview is presented. The test scenario and

experiments is described in Section 8.3.

8.1 Differential-drive Mobile Robot Model

Typically, a differential-drive robot has two coaxial drive wheels and a single castor wheel

(Fig. 8.1). The difference between the left wheel velocity, vl, and the right wheel velocity, vr,

results in the motion of the robot about an instantaneous center of curvature point, ICC, with

an angular velocity, ω. In addition, ICC is always on the common drive-wheel rotation axis.

Another characteristic point is P , a point that is also on the common drive-wheel rotation axis

in the middle between the drive wheels. The distance between P and ICC is denoted by R. If

the wheels rotate with the same rotational velocity, but in the opposite directions (vl = −vr),
then ICC is equal to P , R = 0, and the robot is turning in place. If vl = vr, the robot is moving

along a straight line; hence, R is infinite [119].

131

l

P

castor wheel

ICC

VrVl
ω V

R

Figure 8.1: Differential-drive robot with two drive wheels and a single castor wheel, where
vl, vr are left and right wheel velocities, respectively, l denotes the wheel base, R denotes the
rotation radius, ICC, is the instantaneous center of curvature, P denotes the point in the middle
of the common drive-wheel axis, v denotes the velocity at P , and ω denotes the angular velocity
about ICC.

As the wheel velocities, vl, vr, and the wheel base, l, are known, R, ω, and v can be

calculated as follows:

R =
l

2

vl + vr
vr − vl

, (8.1)

ω =
vr − vl
l

, (8.2)

v =
vl + vr

2
, (8.3)

where, naturally:

v = ωR. (8.4)

A longitudinal velocity, v, is always perpendicular to the drive-wheel axle. Therefore, it is

useful to attach the robot local coordination system, {XR, YR}, at P with the y-axis pointing

to the left wheel (Fig. 8.2). As the robot cannot move in the YR-axis direction, its motion in a

local frame can represented as a vector [v 0 ω]T .

The motion of a differential-drive robot in a world frame (Fig. 8.2), {XW , YW}, is described

by:
ẋ

ẏ

θ̇

W

=

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

v

0

ω

R

=

v cos θ

v sin θ

ω

 . (8.5)

From Eq. 8.5, we have that ẋ = v cos θ and ẏ = v sin θ; hence:

− ẋ sin θ + ẏ cos θ = 0, (8.6)

which describes nonholonomic constraints.

132

XW

YW

(x,y)
θ

XR

YR

Figure 8.2: Differential-drive robot in a global coordination frame.

The forward kinematics of a differential-drive robot is described by the following equation:

[119]:

x(t+ ∆t) =x(t) +R(sin(θ + ω∆t)− sin(θ))

y(t+ ∆t) =x(t)−R(cos(θ + ω∆t)− cos(θ))

θ(t+ ∆t) =θ + ω∆t,

(8.7)

if ω 6= 0 (|R| <∞), and:

x(t+ ∆t) =x(t) + v∆t sin(θ)

y(t+ ∆t) =x(t) + v∆t cos(θ)

θ(t+ ∆t) =θ,

(8.8)

otherwise.

In this chapter, the longitudinal velocity, v, and rotational velocity, ω, will be used, rather

than the left and right wheel velocities. If state lattices are used for motion planning, R is

imposed by a local curvature of a motion primitive (an arc in a state lattice). Hence, rotational

velocity can be calculated from Eq. 8.4, ω =
v

R
. Therefore, action-event synchronization,

applied to avoid a collision with a moving obstacle, merely focuses on adjusting the longitudinal

133

velocity. Then, Eq. 8.7 can take the form of the following:

x(t+ ∆t) =x(t) +R(sin(θ +
v

R
∆t)− sin(θ))

y(t+ ∆t) =x(t)−R(cos(θ +
v

R
∆t)− cos(θ))

θ(t+ ∆t) =θ +
v

R
∆t,

(8.9)

if 0 < |R| < ∞. (If a state lattice includes arcs that represent turning in place, the angular

velocity needs to be adjusted.)

8.2 System Overview

The overview diagram presenting the tested robot motion planning system is shown in

Figure 8.3. The proposed system consists of the three planning algorithms that form the

hierarchical planning algorithm based on the Real-time Switchback algorithm (Sec. 7.4). The

two topmost levels (i.e., the 2D global grid search (GGS) and the global anytime incremental

state-lattice search (GSLS)), provide heuristics to the consecutive lower levels. Only the lowest

level, the local real-time state-lattice search (RTSLS), calculates a trajectory that is sent to the

trajectory-following algorithm.

As the system is based on the Real-time Switchback that uses the alternating

search-direction technique (Sec. 7.1), search directions are switched at the consecutive search

hierarchy levels. These directions are imposed by the lowest level; as RTSLS is a local search

in a safe interval graph, it must be conducted forward.

All three levels require a problem definition (i.e., the robot’s current state, a goal position,

and a global cost map representing the static obstacles). As RTSLS performs planning among

moving obstacles, it requires additional information about trajectories of detected moving

obstacles that are further transformed into safe intervals collected in a 2D look-up table. The

global cost map is obtained from a map previously built by the SLAM algorithm. This cost map

contains only static obstacles and is updated as new range data are collected. It is important

to pass through to the global cost-map updating process only those distance measurements that

represent static obstacles. Otherwise, moving obstacles would be remembered as static ones.

In the entire system, it is assumed that all calculations are done in the global map frame.

This is provided by the localization process that, upon actual rangefinder and encoder readings,

can localize a robot in the global map.

In the remainder of this section, the three planning levels are discussed in detail.

134

(ωL,ωR)

trajectory

heuristics (2D grid)

Global map
(precomputed)

GGS: Global 2D grid search
(x.y), (forward-search)

GSLS: Global state-lattice search
(x,y,θ,Vx,ω), (backward-search)

RTSLS: Real-time state-lattice search
(x,y,θ,Vx,ω,i), (local forward-search)

Global cost-map

Moving obstacles
detection

Trajectory following
algorithmGlobal localization

Motor
driversWheel encoders

Three-level motion planning (3LMP)
goal

(x,y,θ)

costs
(2D grid)

heuristics (3D grid)

 Hardware interfaces

current state
(x,y,θ,Vx,ω)

Differential-drive robot motion planning
and execution in a dynamic environment

intervals
(2D grid)

static
obstacles

2D laser
range-finder

Figure 8.3: Overview of the tested robot motion planning system.

8.2.1 Two-dimensional Global Grid Search

The GGS is performed as a forward-A* search on a 16-connected grid (Fig. 3.5, Sec. 3.1.3)

as proposed in [11] and later used in [18]. To use distances calculated by a 2D grid search as

heuristics for minimum-time planning, they must correspond to the travel time; therefore, the

action cost in the 2D grid search is calculated as follows:

cost(s1, s2) =
‖s2 − s1‖ · δ
cm(s1) · vmax

. (8.10)

A cost calculated with respect to Eq. 8.10 clearly underestimates the true cost; hence, such a

search provides admissible heuristics for a state-lattice search.

8.2.2 Global State-lattice Search

The quality of a heuristic cost estimation has a great effect on the size of an explored search

space. Therefore, the GSLS aims to provide such a heuristic to the real-time local search

that reflects the kinematic constraints of the robot. In GSLS, a backward search in a 3D

135

state lattice is performed, s = (x, y, θ), where (x, y, θ) is the robot pose on a plane. As the

search algorithm uses a graph, mapping from a state lattice to a graph must be defined, that is,

φGSLS(s) = (x, y, θ). The (x, y) values are simply chosen among the vertices of a regular grid

that has a δ resolution, and θ takes the multiplicity of 2π/16; hence, mapping these values to G

is straightforward. Motion primitives were generated using a script provided with SBPL [51]

that implements the optimization method described in [49].

Due to the dimensionality of the used state lattice and its high number of states, in the GSLS,

AD*-Cut algorithm, an anytime version of D* Extra Lite, is used. In the experiments, the time

reserved for GSLS was set to 2 seconds.

8.2.3 Local Real-time State-lattice Search in a Dynamic Environment

The RTSLS is realized as a local forward-A* in a 6D state-time space, s = (x, y, θ, v, ω, t),

where (x, y, θ) is the robot pose on a plane, v is the longitudinal velocity, ω is the angular

velocity, and t is the time. A 6D state is mapped to a safe interval graph, G, with the mapping

function, φRTSLS(s̃) = (x, y, θ, {−1, 0, 1}, {−1, 0, 1}, id), where id ∈ Z (integer number)

identifies a safe interval.

Velocities v and ω are mapped to the values from the set {−1, 0, 1} that correspond to

negative, zero, and positive values of a given velocity variable. In other words, in the search

graph, only nine general situations (going forward, going backward, left turn in place, right turn

in place, etc.) are recognized as separated nodes.

In addition to the aforementioned graph node labels, an actual state (with real values) is

memorized as a s̃min label for each state mapped to a graph node (as in Sec. 6.5). Therefore,

two states that represent a robot at the same position with different velocities but the same

sign (positive, negative, or zero) will be mapped to the same search graph node. As the

minimum-time path is sought, only a state that minimizes node cost needs to be memorized.

As proposed in Section 6.6, motion primitives used in RTSLS are generated in two steps,

that is, non-temporal motion primitive (actions) generation is followed by an action-event

synchronization generating temporal motion primitives.

Non-temporal Motion Primitive Generation

The RTSLS uses the same basic motion primitives as GSLS; however, from one basic motion

primitive, a few motion primitives are generated by the application of the maximal velocities.

Additionally, states at which the robot is stopped are distinguished as the special states at which

it is possible to switch between left turn in place, right turn in place, going forward, and going

backward. (A motion type cannot change within a single motion primitive.) Thus, from the

136

basic action a = 〈(x1, y1, θ1), (x2, y2, θ2)〉, the following actions are obtained, (as in the case of

forward (backward) movements, the angular velocity depends on the curvature of the motion

primitive, it is omitted in the state description and is replaced with ·):
• if a is a forward movement:

〈(x1, y1, θ1, 0, 0), (x2, y2, θ2, α2v
+
max, ·)〉,

〈(x1, y1, θ1, α1v
+
max, ·), (x2, y2, θ2, α2v

+
max, ·)〉,

〈(x1, y1, θ1, α1v
+
max, ·), (x2, y2, θ2, 0, 0)〉,

(8.11)

• if a is a backward movement:

〈(x1, y1, θ1, 0, 0), (x2, y2, θ2, α2v
−
max, ·)〉,

〈(x1, y1, θ1, α1v
−
max, ·), (x2, y2, θ2, α2v

−
max, ·)〉,

〈(x1, y1, θ1, α1v
−
max, ·), (x2, y2, θ2, 0, 0)〉,

(8.12)

• if a is a left turn in place:

〈(x1, y1, θ1, 0, 0), (x2, y2, θ2, 0, α2ω
+
max)〉,

〈(x1, y1, θ1, 0, α1ω
+
max), (x2, y2, θ2, 0, α2ω

+
max)〉,

〈(x1, y1, θ1, 0, α1ω
+
max), (x2, y2, θ2, 0, 0)〉,

(8.13)

• if a is a right turn in place:

〈(x1, y1, θ1, 0, 0), (x2, y2, θ2, 0, α2ω
−
max)〉,

〈(x1, y1, θ1, 0, α1ω
−
max), (x2, y2, θ2, 0, α2ω

−
max)〉,

〈(x1, y1, θ1, 0, α1ω
−
max), (x2, y2, θ2, 0, 0)〉,

(8.14)

• for all types of movements (a single step):

〈(x1, y1, θ1, 0, 0), (x2, y2, θ2, 0, 0)〉, (8.15)

where α1 = cm(x1, y1), α2 = cm(x2, y2) are cost-map factors.

An action cost is defined as a time of travel along a motion primitive. The

motion primitives generated by SBPL [51] are represented as point sets, {p1, . . . , pn} =

{(x1, y1, θ1), . . . , (xn, yn, θn)}, with a fixed number of intermediate poses, n. Therefore, the

travel time at the maximal possible velocity, vp,max ∈ {v+max, v−max} or vp,max ∈ {ω+
max, ω

−
max}

137

(depending on the movement type), is calculated as follows:

costvp,max(a) =
n−1∑
k=1

2‖pk+1 − pk‖
cm(pk)vp,max + cm(pk+1)vp,max

, (8.16)

which is the sum of travel instances between consecutive points, considering the velocity limits

at these points. For the actions of 〈(p1, 0), (p2, cm(p2)vp,max)〉 and 〈(p1, cm(p1)vp,max), (p2, 0)〉
types, which are actions representing accelerating from zero velocity and stopping from the

maximal velocity, the cost is calculated as follows:

cost(a) = max

(
costvp,max(a),

√
2distance(a)

ap,max

)
. (8.17)

Finally, for step-like actions (of 〈(p1, 0), (p2, 0)〉 type), the cost is calculated as follows:

cost(a) = max

costvp,max(a),

√
2distance(a)

2

ap,max
+

√
2distance(a)

2

ap,max

 . (8.18)

In Eqs. 8.17 and 8.18, ap,max denotes the maximal acceleration (deceleration), such that, to

some extent, acceleration (deceleration) limits are considered.

Temporal Safe Interval Motion Primitive Generation

Temporal motion primitives are generated by a simple action-event synchronization (Sec. 6.6.1)

based on non-temporal primitives. Furthermore, it is assumed that a robot and the moving

obstacles are disk shaped, such that a disk circumscribes an object. Therefore, action-event

synchronization is not required for turn-in-place movements.

8.2.4 Partial Motion Planning Using a Safe Interval Graph

In [35], Petti and Fraichard proposed partial motion planning (PMP), a scheme for safe motion

planning in dynamic environments. In this scheme, local motion planning is performed in

cycles of a fixed duration, tc (Fig. 8.4). At the beginning of an i-th cycle, ti, new observations

are acquired, and a prediction of moving-obstacle motion is made. Then, a local search is

performed until ti+1 = ti + tc. The local search that starts at ti is rooted at s̃i+1 = (si+1, ti+1),

where s̃i+1 can be predicted using the plan from the previous search. A plan returned by the

local search is valid for a time interval, [ti+1, ti+1 + tvi], where the validity time, tvi , should be

greater than the cycle duration, tc.

138

Planning (tp≤tc)

Local trajectory
duration (tτ)

time,
statet0

Moving obstacles
trajectories

t1 t2 t3 tn-1 tn tn+1

Plan execution (tc)

s1 s2 s3 sn-1 sn sn+1

tgoal

sgoal

process duration data validity time (tv)

Moving obstacles
detection

Figure 8.4: Partial motion planning scheme (adapted from [35]).

As stated in [35], a collision-free local trajectory cannot include inevitable collision states

(ICS) (i.e., states from which every future trajectory leads to a collision (Sec. 6.1)). The

computation of all future trajectories to determine whether a state is an ICS is intractable.

Therefore, in [35], it is proposed to determine whether a collision-free braking trajectory for

each state along a local plan (generated by an application of the maximum deceleration) exists

that does not end in an ICS. Although such an approach provides maximal safety, it is restrictive.

Let us consider the example from Figure 8.5. If ST obs is very wide (i.e., ST obs projected on

the s axis has d length) such that d is greater than the distance necessary for the robot to stop,

d > v2max

2·amin
, there is no non-ICS trajectory that leads from state s1 to s2.

x

t

STobs

ss1 s2

d

Figure 8.5: Example of an instance in which checking the trajectory of inevitable collision
states, proposed in [35], is too restrictive.

139

Therefore, herein, it is proposed that, if a state at the end of the local trajectory is not an

ICS, then the trajectory is collision-free. Furthermore, in RTSLS, states with 0 velocity are

represented in a safe interval graph; thus, searching for a collision-free braking trajectory does

not have to be performed for each state in an RTSLS search tree. It is sufficient to select (during

a local search) a safe state s, as proposed in a Real-time Switchback (Sec. 7.4), that is, a state at

which the robot is stopped and there is no future event, e = (s, te), such that e ∈ Eobs (the state

is not on a predicted moving obstacle path). This requirement can also be loosened such that a

safe state is a state for which there is no collision in a given time horizon.

As a final remark, the duration of the local trajectory, tτi , is not the same as the validity

time, tvi , and does not need to be greater than the cycle duration, tc. If a trajectory duration

without a time necessary for stopping is greater than the cycle time (i.e., tτi − vmax

amin
≥ tc), the

overall motion will be smoother; otherwise, a robot will be stopping and waiting for a new plan.

A local trajectory validity time, tvi , reflects an obstacle motion prediction horizon. Optionally,

tvi can be calculated as tvi = te − ti+1, where te is the earliest collision time (with a moving

obstacle) at the end of the local trajectory.

8.2.5 Obstacle Motion Detection

In the presented system, it is assumed that moving obstacles are constantly detected and their

future trajectories and velocities can be predicted for a finite time horizon, namely, the data

validity time, tv (Fig. 8.4).

In all tests presented in this thesis, obstacle radii were constant. Then, in the 3D (x, y, t)

space, an obstacle leaves a cylindrical trace (Fig. 8.6a). Herein, planning is performed in a

state lattice, therefore, moving obstacles are observed only at state lattice vertices, which,

in Figure 8.6b, is represented by collision intervals. As safe intervals complement collision

intervals, the calculation of safe intervals is straightforward.

8.2.6 Trajectory Tracking Algorithm

A path provided by a state-lattice motion planning algorithm may contain discontinuities at

state-lattice vertices [18], especially in angular velocity. Furthermore, real robotic systems

suffer from inaccuracies. Therefore, velocities calculated from a trajectory should not be used

directly as control inputs. In the system described in this chapter, control inputs (v, ω) are

computed by the trajectory tracking algorithm of the following form [120]:

vnew =vt cos(θt − θ) + k1
(
(xt − x) cos(θ) + (yt − y) sin(θ)

)
ωnew =ωt + k2sgn(vt)

(
− (xt − x) sin(θ) + (yt − y) cos(θ)

)
+ k3(θt − θ),

(8.19)

140

0

10

1

2

5

t

3

Y

4

0
108

X

642-5 0-2

0

10

1

2

t

3

Y

5

4

10

X

8640 20

a) b)

Figure 8.6: Trace in a state-time space left by a disc-shaped obstacle moving along a straight
line: a) exact trace, b) collision intervals.

where (xt, yt, θt) is the point on the trajectory to follow, vt and ωt are robot velocities at the

trajectory point, (x, y, θ) is the current robot position (Fig. 8.7), and k1 = 0.5, k2 = 1, and

k3 = 0.5 are the empirically chosen controller parameters.

XW

YW

(x,y)
θ

(xt,yt)
θt

ω

V

Vt

ωt

Figure 8.7: Differential-drive robot trajectory tracking.

8.3 Experiments

A simulation in a Stage simulator was prepared as the final evaluation of the three-level planning

algorithm (3LMP)1. As 3LMP consists of the algorithms of different classes (i.e., real-time

1A video demonstrating a sample test run is available at https://youtu.be/buVdbx046QU

141

and anytime incremental) a number of parameters need to be defined. These are gathered in

Table 8.1. The most interesting parameters are: maximum allocated time 0.2 s (5.0 s, when run

for the first time) and AD*-Cut specific parameters, εinit = 3.0 and εstep = 0.2.

The map used for tests represents a real environment, part of the Faculty of Mechatronics

building (Fig. 8.8). In the prepared scenario, a robot needs to navigate from a room to a hall.

The path runs through a hallway along which four objects are moving (while two objects move

from the left to the right, the other two move the opposite).

The motion of the objects was planned off-line using the approach described in Section 6.8.

The moving objects were simulated in Stage as holonomic robots (Fig. 8.9), which do not need

to change orientation, thus, a simple control algorithm can be used.

Figure 8.8: View obtained from RViz (ROS visualization) during the test. The robot navigates
from a room (top-left) to a hall (bottom-right); the arrows depict poses of the robot along the
traveled path. The dashed lines in the hallway represent the trajectories of the four moving
obstacles.

The robot is equipped with a laser scanner that works in a range of 10 m; hence an

observation range was considerably long, which was 400 map cells. In the prepared simulation,

a laser scanner could register only static obstacles; moving obstacles were detected by a mock

motion detector, such that the robot could know trajectories of the moving obstacles for 20

seconds into the future.

The same scenario (i.e., navigation from a room to a hall) was run ten times. The average

results of these runs are presented in Table 8.2. In all runs the robot was able to accomplish a

mission and the median and maximum search times per re-planning episode were close to the

granted times. Furthermore, in these runs, the robot traveled similar distance, about 53 m, in the

similar time, 190 s.

142

a) b)

c) d)

e) f)

Figure 8.9: Subsequent views obtained from simulator Stage during the test. The square with a
label is the controlled robot; the other shapes are the moving obstacles.

The search time per re-planning, traveled distance, longitudinal and angular velocities, for

three sample runs, are presented in Figure 8.10. In the traveled distance plot, it can be observed

that in all runs the beginning trajectory is almost the same. The differences between runs appear

about the 70th second. While, in run 1, the robot was waiting considerably long in the doorway

of the room, in run 10, the robot entered the hallway earlier and was moving right after a moving

obstacle with the reduced speed.

143

Table 8.1: Parameters of the three-level motion planning algorithm benchmark.
Stage Setting

Simulation frequency 10 Hz
Environment Settings

Map cell resolution δ 0.025 m
Map size 79.175 m× 21.95 m
Map size (cells) 3167× 878 cells
Laser scanner range 10 m
Laser scanner range (cells) 400 cells
Moving obstacles detection horizon 20 s

Robot Parameters
Robot size (width × length) 0.4 m× 0.4 m
Minimum longitudinal velocity, vmin −0.1 m

s
Maximum longitudinal velocity, vmax 0.5 m

s
Minimum longitudinal acceleration (deceleration), amin −1 m

s2

Maximum longitudinal acceleration, amax 1 m
s2

Minimum angular velocity, ωmin −0.78 rad
s

Maximum angular velocity, ωmax 0.78 rad
s

Local A* Algorithm (RTSLS: level 0)
Search direction forward

Search space
6D: safe interval graph
on top of a state lattice

with velocity sign (Sec. 8.2.3)
Number of possible robot orientations (angles) 16
Angular resolution of robot orientation 22.5◦

Number of basic motion primitives per direction 7
Maximum search time 0.2 s
Maximum search time (initial planning) 5.0 s

AD*-Cut Algorithm (GSLS: level 1)
Search direction backward
Search space 3D state lattice
Number of possible robot orientations (angles) 16
Angular resolution of robot orientation 22.5◦

Number of basic motion primitives per direction 7
εinit 3.0
εstep 2.0

A* Algorithm (GGS: level 2)
Search direction forward
Search space 2D 16-connected grid

Heuristic h(q, qgoal) =
‖qgoal−q‖
vmax

,
where q = (x, y) ∈ R2

144

Table 8.2: Experimental results for three-level motion planning among four moving obstacles.

#Run
Search Time per
Re-plan. [ms]

#Search
Steps per
Re-plan.

Total
Time [s]

Traveled
distance
[m]Median Max.

1 200.04 5811.22 1953 195.20 53.52
2 230.94 5795.22 1761 183.20 53.72
3 200.07 5865.70 1893 184.30 52.77
4 200.03 6015.99 2067 194.00 53.22
5 284.95 5847.56 1421 190.80 52.93
6 280.35 5815.11 1445 189.30 52.44
7 320.56 5767.72 1264 189.70 53.67
8 200.04 6065.45 1766 209.30 53.24
9 200.06 5877.71 1374 205.30 53.23
10 311.90 5906.54 1615 181.70 53.76

Total 242.89 5876.82 1656 192.28 53.25

8.4 Conclusions

In this chapter, the system utilizing the three-level hierarchical algorithm for mobile robot

motion planning among moving obstacles was presented. The algorithm is based on the

proposed Real-time Switchback (Sec. 7.4), and consists of local A*, AD*-Cut and A*

algorithms, which are running in real time. The results of the simulation in Stage suggest that the

proposed algorithms and their hierarchical composition can solve the problem of mobile robot

motion planning in a dynamic environment. Although the algorithms in their current forms

were not tested on a real robot, it is a common approach to run comprehensive benchmarks and

simulations before a system can be deployed on a robot.

145

0 50 100 150 200

0
20

00
40

00
60

00
Search time

Time [s]

T
im

e
[m

s]

run 1
run 5
run 10

0 50 100 150 200

0
10

20
30

40
50

Traveled distance

Time [s]

Tr
av

el
ed

 d
is

ta
nc

e
[m

] run 1
run 5
run 10

0 50 100 150 200−
0.

1
0.

1
0.

3
0.

5

Longitudinal velocity

Time [s]

Lo
ng

itu
di

na
l v

el
oc

ity
 [m

/s
]

run 1
run 5
run 10

0 50 100 150 200

−
0.

5
0.

0
0.

5

Rotational velocity

Time [s]

R
ot

at
io

na
l v

el
oc

ity
 [r

ad
/s

] run 1
run 5
run 10

Figure 8.10: Data recorded for the three sample runs of the three-level motion planning
algorithm in the simulated scenario.

146

9. Summary

In this thesis, the problem of mobile robot motion planning in a dynamic environment was

addressed. The term dynamic environment used herein involves all types of environmental

variability, such as static obstacle appearance and disappearance and changes induced by

moving obstacles. It is important to note that the presence of moving obstacles introduces

time dependency, which significantly complicates the problem.

The main objective of the thesis was to develop new motion planning algorithms that

are suitable for real-world usage and provide a good trade-off between optimality (i.e., the

least-cost path, either the minimum time or minimum distance) and computation time. This has

been achieved using hierarchically composed heuristic search algorithms within the proposed

Real-time Switchback algorithm. The algorithms were applied to planning in a time-dependent

search space with an event-based description of moving obstacles. Finally, as a proof of concept,

the system for a mobile robot motion planning in a dynamic environment utilizing the new

algorithms was proposed and tested.

Although single elements of the proposed system can be identified across systems developed

over the decades, the hierarchical composition of the algorithms, a compact event-based

search-space description, and the two new incremental search algorithms, D* Extra Lite and

AD*-Cut are the author’s novel contributions to the field of robot motion planning and graph

search.

The conducted work was divided into the following stages: development of the new

quick incremental search algorithms, development of the theoretical description of a search

space based on events for planning among moving obstacles, development of the hierarchical

composition of heuristic search algorithms, and development of the system for a mobile robot

motion planning in a dynamic environment.

9.1 Main Contributions

New incremental search algorithms. In Chapters 4 and 5, two new incremental heuristic

search algorithms, D* Extra Lite and AD*-Cut were presented. While D* Extra Lite is an

optimal algorithm (i.e., it provides the least-cost path within the current knowledge of an

147

environment), AD*-Cut works in an anytime manner, quickly providing a sub-optimal path and

improving it in the remaining time allocated for searching. Both algorithms utilize a search-tree

cutting technique.

This technique allows reinitializing search-tree branches affected by obstacle appearance

and disappearance, which is reflected by search graph edge-cost changes. Although search-tree

branch cutting was used in the past for incremental planning [61, 60], this technique was

enhanced by the author and utilized in the D* Extra Lite and AD*-Cut algorithms that

outperformed the state-of-the-art algorithms in the 2D grid path-planning benchmark. The

benchmark results (Sec. 4.6 and Sec. 5.3) suggest that D* Extra Lite is from 1.08 to 1.94 times

faster than D* Lite [10] and that AD*-Cut provides the first solution 1.47 times faster than

AD* [32], which supports the thesis stated in this dissertation (Proposition 2.2) that search-tree

brunch cutting can be used to speed up an incremental search.

Event-based search-space description. As planning among moving obstacles requires time

as an additional variable (i.e., planning is held in a state-time space), a compact representation

of a search space is desirable. A state-time space can be decomposed like a non-temporal state

space; for example, it is possible to embed a regular grid in it. However, to reduce the size

of a search space, time can be decomposed into cells representing qualitative situations that

represent time before and after the presense of the moving obstacle in a place. The application

of such an approach can be found in [33, 22] and in the author’s former work [23].

In this thesis, a generalized description of such a qualitative time decomposition is proposed,

namely, an event-based state-time space decomposition (Sec. 6.3). In this description, events are

state-time points describing a moment of entering or leaving a map cell by a moving obstacle.

Hence, for nmoving obstacles that visit the same map cell at most once, a search space requires

only n + 1 time layers, which supports one of the stated theses (Proposition 2.3). Then,

motion planning among moving obstacles can be considered an action-event synchronization.

In this thesis (Sec. 6.6), an action-event synchronization is investigated for applicability to robot

motion planning (including kinematic, dynamic, and problem-specific constraints). Next, it has

been shown that an event-based description can be used for minimum-time path planning among

moving obstacles.

Hierarchical heuristic search algorithms. Hierarchical planning is a natural approach to

solving complex problems. A complex planning problem can be divided into several hierarchy

levels called abstractions. Among algorithms for hierarchical planning discussed in this thesis

(Sec. 7.1), algorithms that use abstraction-based heuristics calculated by alternating search

directions have been found especially useful for time-dependent motion planning.

148

As discussed in Section 7.2, a non-temporal search space consisting only of static obstacles

is a quotient of the state-time space obtained by discarding a dimension of time; thus, it can

be used to compute abstraction-based heuristics. Such a heuristic does not overestimate the

true cost; hence, it is an admissible heuristic that can be used for the minimum-time search

in a state-time space. This claim is supported by the experiments (Sec. 7.3), in which two

algorithms utilizing alternating search directions, one running bottom-up (Switchback [16]) and

one running top-down (Sec. 7.1.5), were over 1.5 times quicker than A* using the Euclidean

distance as a heuristic.

To make use of hierarchical planning advantages in robot motion planning, a new

Real-time Switchback algorithm has been proposed. Real-time Switchback is a combination

of techniques utilized in real-time algorithms (discussed in Sec. 6.7.1) and the Switchback

algorithm. Furthermore, in this thesis (Sec. 7.4.2), it has been proposed (and supported by

the appropriate proof) that, under certain conditions, a heuristic learning step that is typical for

real-time algorithms is not necessary for real-time time-dependent planning. This proposition

is important, as it allows reducing the space and time complexities of the Real-time Switchback

algorithm.

As Switchback and Real-time Switchback can be considered meta-algorithms, it was

possible to combine algorithms of different classes. Thus, local A* running at the base

level has been combined with the novel D* Extra Lite and AD*-Cut algorithms, resulting in

the hierarchical real-time incremental algorithms (Sec. 7.4.2). These new algorithms allow

performing a real-time hierarchical search that provides a trade-off between optimality and

computation time, supporting Proposition 2.1 of this dissertation.

System for mobile robot motion planning in a dynamic environment. In Chapter 8, the

system for mobile robot motion planning in a dynamic environment, which is based on a

three-level hierarchical real-time incremental planning algorithm, has been proposed.

The entire system in the proposed form was tested only in a Stage simulator. (The

main difficulty with testing on a real robot is that the system requires an algorithm for

moving-obstacle detection, which is a non-trivial problem and is out of the scope of this thesis.)

However, the hierarchical planning algorithm was implemented using the ROS framework

[118]; hence, it is ready for deployment on a real robot. Furthermore, the use of a Stage

simulator within a ROS framework made the tests more realistic. The simulation tests (Sec. 8.3)

strongly suggest that the proposed system with the three-level planning algorithm at its core can

be used for mobile robot motion planning in real dynamic environments.

149

9.2 Conclusions and Future Work

The main objective of the thesis has been achieved; the algorithms for mobile robot

motion planning in a dynamic environment have been developed and thoroughly tested. To

summarize, the following new algorithms have been proposed: D* Extra Lite, AD*-Cut,

and its combinations with real-time search in accordance with the Real-time Switchback

meta-algorithm.

With the experience gained from the work, it can be proposed that search-tree branch cutting

used for an incremental search and the alternating search directions used for abstraction-based

heuristic computations are crucial to the performance of the proposed system for mobile robot

motion planning. In the future, the proposed system will be deployed and tested on real robots

(also robotic arms); however, this will require the development of a moving-obstacle detection

algorithm.

Although this thesis is devoted in particular to mobile robot motion planning, the algorithms

and event-based description of dynamic environments are general purpose. Thus, all the

proposed algorithms apply to any path-searching problem that can be represented as a graph.

Indeed, much of the work in this field was originally for use in video games. A qualitative

event-based description is an important step toward the integration of motion planning and

action planning, which is typically based on the qualitative description of planning problems

[121]. Furthermore, as robots sharing a common workspace can consider each other moving

obstacles, the methods presented in this thesis, such as action-event synchronization, can be

applied to multi-vehicle motion planning [122, 123] and robot cooperation [124].

150

References

[1] Roland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza. Introduction to

autonomous mobile robots. MIT Press, 2011.

[2] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic

determination of minimum cost paths. IEEE Transactions on Systems Science and

Cybernetics, 4(2):100–107, 1968.

[3] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson

Education, 2003.

[4] Cezary Zieliński, Wojciech Szynkiewicz, Tomasz Winiarski, and Tomasz Kornuta.

MRROC++ based system description. Technical Report Technical Report 06-9, IAIS,

Warsaw, 2006.

[5] David L Poole and Alan K Mackworth. Artificial Intelligence: foundations of

computational agents. Cambridge University Press, 2010.

[6] Maxim Likhachev, Geoffrey J Gordon, and Sebastian Thrun. ARA*: Anytime A*

with provable bounds on sub-optimality. In Advances in Neural Information Processing

Systems, pages 767–774, 2004.

[7] Eric A Hansen and Rong Zhou. Anytime heuristic search. Journal of Artificial

Intelligence Research (JAIR), 28:267–297, 2007.

[8] Jur Van Den Berg, Rajat Shah, Arthur Huang, and Ken Goldberg. ANA*: anytime

nonparametric A*. In Proceedings of Twenty-fifth AAAI Conference on Artificial

Intelligence (AAAI‘11), pages 105–111, 2011.

[9] Anthony Stentz. The Focussed D* algorithm for real-time replanning. In Proceedings of

the 14th International Joint Conference on Artificial Intelligence - Volume 2, Montreal,

Quebec, Canada, IJCAI’95, pages 1652–1659, 1995.

[10] Sven Koenig and Maxim Likhachev. Fast replanning for navigation in unknown terrain.

IEEE Transactions on Robotics, 21(3):354–363, 2005.

151

[11] Leszek Podsędkowski, Jacek Nowakowski, Marek Idzikowski, and Istvan Vizvary.

A new solution for path planning in partially known or unknown environment for

nonholonomic mobile robots. Robotics and Autonomous Systems, 34(2):145–152, 2001.

[12] Carlos Hernández, Roberto Asín, and Jorge A Baier. Reusing previously found A* paths

for fast goal-directed navigation in dynamic terrain. In Twenty-Ninth AAAI Conference

on Artificial Intelligence, Austin, Texas, USA, AAAI’15, pages 1158–1164, 2015.

[13] Maciej Przybylski and Barbara Putz. D* Extra Lite: a Dynamic A* with search-tree

cutting and frontier-gap repairing. International Journal of Applied Mathematics and

Computer Science (AMCS), 27(2):273–290, 2017.

[14] Richard E Korf. Real-time heuristic search. Artificial Intelligence, 42(2-3):189–211,

1990.

[15] R.C. Holte, T. Mkadmi, R.M. Zimmer, and A. J. MacDonald. Speeding up

problem solving by abstraction: A graph oriented approach. Artificial Intelligence,

85(1-2):321–361, 1996.

[16] Bradford John Larsen, Ethan Burns, Wheeler Ruml, and Robert Holte. Searching without

a heuristic: Efficient use of abstraction. In Proceedings of the Twenty-Fourth AAAI

Conference on Artificial Intelligence (AAAI‘10), pages 114–120, 2010.

[17] Michael J Leighton, Wheeler Ruml, and Robert C Holte. Faster optimal and suboptimal

hierarchical search. In Proceedings of the Fourth Annual Symposium on Combinatorial

Search (SoCS-2011), pages 92–99, 2011.

[18] Maxim Likhachev and Dave Ferguson. Planning long dynamically–feasible

maneuvers for autonomous vehicles. The International Journal of Robotics Research,

28(8):933–945, 2009.

[19] Oliver Brock and Oussama Khatib. High-speed navigation using the global dynamic

window approach. In Robotics and Automation (ICRA), Proceedings. 1999 IEEE

International Conference on, volume 1, pages 341–346. IEEE, 1999.

[20] Robert C Holte, Chris Drummond, Maria B Perez, Robert M Zimmer, and

Alan J MacDonald. Searching with abstractions: A unifying framework and new

high-performance algorithm. In Proceedings of The Tenth Conference of the Canadian

Society for Computational Studies of Intelligence, pages 263–270, 1994.

152

[21] Thierry Fraichard. Trajectory planning in a dynamic workspace: a ’state-time space’

approach. Advanced Robotics, 13(1):75–94, 1998.

[22] Mike Phillips and Maxim Likhachev. SIPP: Safe interval path planning for dynamic

environments. In Robotics and Automation (ICRA), 2011 IEEE International Conference

on, pages 5628–5635. IEEE, 2011.

[23] Maciej Przybylski and Barbara Siemiątkowska. A new CNN-based method of path

planning in dynamic environment. In Rutkowski L., Korytkowski M., Scherer R.,

Tadeusiewicz R., Zadeh L.A., and Zurada J. M., editors, Artificial Intelligence and Soft

Computing. ICAISC 2012, volume 7268 of Lecture Notes in Computer Science, pages

484–492. Springer, Berlin, Heidelberg, 2012.

[24] Maciej Przybylski, Piotr Węclewski, and Mateusz Wiśniowski. Moduł planowania

ścieżki w środowisku dynamicznym dla robota Kurier. Prace Naukowe Politechniki

Warszawskiej, pages 235–245, 2012.

[25] Steven M LaValle. Planning Algorithms. Cambridge University Press, 2006.

[26] Benjamin Cohen, Sachin Chitta, and Maxim Likhachev. Single- and dual-arm motion

planning with heuristic search. The International Journal of Robotics Research,

33(2):305–320, 2014.

[27] Christos Katrakazas, Mohammed Quddus, Wen-Hua Chen, and Lipika Deka. Real-time

motion planning methods for autonomous on-road driving: State-of-the-art and

future research directions. Transportation Research Part C: Emerging Technologies,

60:416–442, 2015.

[28] David González, Joshué Pérez, Vicente Milanés, and Fawzi Nashashibi. A review of

motion planning techniques for automated vehicles. IEEE Transactions on Intelligent

Transportation Systems, 17(4):1135–1145, 2016.

[29] Michael Hoy, Alexey S Matveev, and Andrey V Savkin. Algorithms for collision-free

navigation of mobile robots in complex cluttered environments: a survey. Robotica,

33(03):463–497, 2015.

[30] Johann Borenstein and Yoram Koren. The vector field histogram-fast obstacle avoidance

for mobile robots. IEEE Transactions on Robotics and Automation, 7(3):278–288, 1991.

[31] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The dynamic window approach to

collision avoidance. IEEE Robotics & Automation Magazine, 4(1):23–33, 1997.

153

[32] Maxim Likhachev, David I Ferguson, Geoffrey J Gordon, Anthony Stentz, and Sebastian

Thrun. Anytime Dynamic A*: An anytime, replanning algorithm. In Proceedings of the

Fifteenth International Conference on International Conference on Automated Planning

and Scheduling, Monterey, California, USA, ICAPS’05, pages 262–271, 2005.

[33] Jur P Van Den Berg and Mark H Overmars. Roadmap-based motion planning in dynamic

environments. Robotics, IEEE Transactions on, 21(5):885–897, 2005.

[34] Maciej Przybylski. Hierarchiczne planowanie akcji robota usługowego w środowisku

dynamicznym. Prace Naukowe Politechniki Warszawskiej. Elektronika, 2(194):471–480,

2014.

[35] Stephane Petti and Thierry Fraichard. Safe motion planning in dynamic environments.

In Intelligent Robots and Systems (IROS), Proceedings. 2005 IEEE/RSJ International

Conference on, pages 2210–2215. IEEE, 2005.

[36] Ming Lin and Stefan Gottschalk. Collision detection between geometric models: A

survey. In Proc. of IMA conference on mathematics of surfaces, volume 1, pages

602–608, 1998.

[37] Pablo Jiménez, Federico Thomas, and Carme Torras. 3D collision detection: a survey.

Computers & Graphics, 25(2):269–285, 2001.

[38] Sinan Kockara, Tansel Halic, K Iqbal, Coskun Bayrak, and Richard Rowe. Collision

detection: A survey. In Systems, Man and Cybernetics, 2007. ISIC. IEEE International

Conference on, pages 4046–4051. IEEE, 2007.

[39] Robert Bohlin and Lydia E Kavraki. Path planning using lazy PRM. In Robotics and

Automation (ICRA), Proceedings.2000 IEEE International Conference on, volume 1,

pages 521–528. IEEE, 2000.

[40] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational

Geometry: Algorithms and Applications. Third Edition. Springer-Verlag, Berlin

Heidelberg, 2008.

[41] Jon Louis Bentley. Multidimensional binary search trees used for associative searching.

Communications of the ACM, 18(9):509–517, 1975.

[42] Sebastian Thrun and John J Leonard. Simultaneous localization and mapping. In

Siciliano B. and Khatib O., editors, Springer Handbook of Robotics, chapter 37, pages

871–889. Springer, 2008.

154

[43] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Probabilistic

roadmaps for path planning in high-dimensional configuration spaces. IEEE

Transactions on Robotics and Automation, 12(4):566–580, 1996.

[44] Steven M LaValle, Michael S Branicky, and Stephen R Lindemann. On the relationship

between classical grid search and probabilistic roadmaps. The International Journal of

Robotics Research, 23(7-8):673–692, 2004.

[45] Frank Lingelbach. Path planning using probabilistic cell decomposition. In Robotics

and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference on,

volume 1, pages 467–472. IEEE, 2004.

[46] Peng Cheng and Steven M LaValle. Resolution completeness for sampling-based motion

planning with differential constraints. International Journal of Robotics Research, pages

1–37, 2004.

[47] Steven M LaValle. Rapidly-exploring random trees: A new tool for path planning.

Technical Report Technical Report 98-11, Computer Science Dept., Iowa State

University, 1998.

[48] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James Diebel. Practical

search techniques in path planning for autonomous driving. In Proceedings of the First

International Symposium on Search Techniques In Artificial Intelligence and Robotics

(STAIR-08), pages 1–6, 2008.

[49] Thomas M Howard and Alonzo Kelly. Optimal rough terrain trajectory generation for

wheeled mobile robots. The International Journal of Robotics Research, 26(2):141–166,

2007.

[50] Mihail Pivtoraiko, Ross A Knepper, and Alonzo Kelly. Differentially constrained mobile

robot motion planning in state lattices. Journal of Field Robotics, 26(3):308–333, 2009.

[51] Search-Based Planning Library (SBPL). http://sbpl.net.

[52] Traverso P. Nau D., Ghallab M. Automated Planning: Theory & Practice. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[53] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1(1):269–271, 1959.

155

[54] Stefan Edelkamp and Stefan Schrödl. Heuristic Search - Theory and Applications.

Academic Press, 2012.

[55] Mohamed Elbanhawi and Milan Simic. Sampling-based robot motion planning: A

review. IEEE Access, 2:56–77, 2014.

[56] Steven M LaValle and James J Kuffner Jr. Randomized kinodynamic planning. The

International Journal of Robotics Research, 20(5):378–400, 2001.

[57] Tobias Kunz and Mike Stilman. Kinodynamic RRTs with fixed time step and best-input

extension are not probabilistically complete. In Algorithmic Foundations of Robotics XI,

pages 233–244. Springer, 2015.

[58] Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile robots. The

international journal of robotics research, 5(1):90–98, 1986.

[59] Anthony Stentz. Optimal and efficient path planning for partially-known environments.

In Robotics and Automation (ICRA), Proceedings. 1994 IEEE International Conference

on, volume 4, pages 3310–3317, 1994.

[60] Leszek Podsędkowski. Path planner for nonholonomic mobile robot with fast replanning

procedure. In Robotics and Automation (ICRA), Proceedings. 1998 IEEE International

Conference on, volume 4, pages 3588–3593, 1998.

[61] Karen I Trovato. Differential A*: An adaptive search method illustrated with robot path

planning for moving obstacles and goals, and an uncertain environment. International

Journal of Pattern Recognition and Artificial Intelligence, 4(2):245–268, 1990.

[62] Karen I Trovato and Leo Dorst. Differential A*. IEEE Transaction on Knowledge and

Data Engineering, 14(6):1218–1229, 2002.

[63] Sven Koenig, Maxim Likhachev, and David Furcy. Lifelong planning A*. Artificial

Intelligence, 155(1):93–146, 2004.

[64] Xiaoxun Sun and Sven Koenig. The Fringe-Saving A* search algorithm—a feasibility

study. In Proceedings of the 20th International Joint Conference on Artifical Intelligence,

Hyderabad, India, IJCAI’07, pages 2391–2397, 2007.

[65] Sven Koenig and Maxim Likhachev. Adaptive A*. In Proceedings of the Fourth

International Joint Conference on Autonomous Agents and Multiagent Systems, Utrecht,

Netherlands, AAMAS ’05, pages 1311–1312, 2005.

156

[66] Carlos Hernández, Pedro Meseguer, Xiaoxun Sun, and Sven Koenig. Path-adaptive A*

for incremental heuristic search in unknown terrain. In Proceedings of the Nineteenth

International Conference on Automated Planning and Scheduling, Thessaloniki, Greece,

ICAPS’09, pages 358–361, 2009.

[67] Carlos Hernández, Jorge A Baier, and Roberto Asín. Making A* run faster than D*

Lite for path-planning in partially known terrain. In Proceedings of the Twenty-Fourth

International Conference on Automated Planning and Scheduling, Portsmouth, New

Hampshire, USA, ICAPS’14, pages 504–508, 2014.

[68] Carlos Hernández, Xiaoxun Sun, Sven Koenig, and Pedro Meseguer. Tree Adaptive A*.

In The 10th International Conference on Autonomous Agents and Multiagent Systems -

Volume 1, Taipei, Taiwan, AAMAS ’11, pages 123–130, 2011.

[69] Xiaoxun Sun, Sven Koenig, and William Yeoh. Generalized Adaptive A*. In

Proceedings of the 7th International Joint Conference on Autonomous Agents and

Multiagent Systems - Volume 1, Estoril, Portugal, AAMAS ’08, pages 469–476, 2008.

[70] Sven Koenig and Xiaoxun Sun. Comparing real-time and incremental heuristic search for

real-time situated agents. Autonomous Agents and Multi-Agent Systems, 18(3):313–341,

2009.

[71] Sven Koenig and Maxim Likhachev. Improved fast replanning for robot navigation

in unknown terrain. Technical Report Tech. Rep. GIT-COGSCI-2002/3, College of

Computing, Georgia Institute of Technology, Atlanta (Georgia), 2001.

[72] Nathan R Sturtevant. Benchmarks for grid-based pathfinding. Computational

Intelligence and AI in Games, IEEE Transactions on, 4(2):144–148, 2012.

[73] Rong Zhou and Eric A Hansen. Multiple sequence alignment using anytime A*. In

American Association for Artificial Intelligence (AAAI-02) Proceedings, pages 975–977,

2002.

[74] Sandip Aine and Maxim Likhachev. Anytime Truncated D*: Anytime replanning with

truncation. In Sixth Annual Symposium on Combinatorial Search, pages 2–10, 2013.

[75] Kalin Gochev, Alla Safonova, and Maxim Likhachev. Anytime tree-restoring weighted

A* graph search. In Seventh Annual Symposium on Combinatorial Search, pages 80–88,

2014.

157

[76] Christopher Wilt and Wheeler Ruml. When does weighted A* fail? In Proceedings

of the Fifth Annual Symposium on Combinatorial Search (SOCS 2012), pages 137–144,

2012.

[77] Michael Erdmann and Tomas Lozano-Perez. On multiple moving objects. In

Robotics and Automation (ICRA), Proceedings. 1986 IEEE International Conference on,

volume 3, pages 1419–1424. IEEE, 1986.

[78] Thierry Fraichard and Hajime Asama. Inevitable collision states—a step towards safer

robots? Advanced Robotics, 18(10):1001–1024, 2004.

[79] Jur Pieter van den Berg. Path planning in dynamic environments. PhD thesis, Utrecht

University, 2007.

[80] Juan P Gonzalez, Andrew Dornbush, and Maxim Likhachev. Using state dominance

for path planning in dynamic environments with moving obstacles. In Robotics

and Automation (ICRA), Proceedings, 2012 IEEE International Conference on, pages

4009–4015. IEEE, 2012.

[81] John Reif and Micha Sharir. Motion planning in the presence of moving obstacles.

Technical Report TR-06-85, Center for Research in Computing Technology, Harvard

University, 1985.

[82] Kikuo Fujimura. Time-minimum routes in time-dependent networks. IEEE Transactions

on Robotics and Automation, 11(3):343–351, 1995.

[83] Robert Kindel, David Hsu, J-C Latombe, and Stephen Rock. Kinodynamic motion

planning amidst moving obstacles. In Robotics and Automation (ICRA), Proceedings.

2000 IEEE International Conference on, volume 1, pages 537–543. IEEE, 2000.

[84] David Hsu, Robert Kindel, Jean-Claude Latombe, and Stephen Rock. Randomized

kinodynamic motion planning with moving obstacles. The International Journal of

Robotics Research, 21(3):233–255, 2002.

[85] Léonard Jaillet and Thierry Siméon. A PRM-based motion planner for dynamically

changing environments. In Intelligent Robots and Systems (IROS), Proceedings. 2004

IEEE/RSJ International Conference on, volume 2, pages 1606–1611. IEEE, 2004.

[86] Mikael Svenstrup, Thomas Bak, and Hans Jørgen Andersen. Trajectory planning for

robots in dynamic human environments. In Intelligent Robots and Systems (IROS), 2010

IEEE/RSJ International Conference on, pages 4293–4298. IEEE, 2010.

158

[87] Jur van den Berg, Dave Ferguson, and James Kuffner. Anytime path planning and

replanning in dynamic environments. In Robotics and Automation (ICRA), Proceedings.

2006 IEEE International Conference on, pages 2366–2371. IEEE, 2006.

[88] Chao Chen, Markus Rickert, and Alois Knoll. Kinodynamic motion planning

with space-time exploration guided heuristic search for car-like robots in dynamic

environments. In Intelligent Robots and Systems (IROS), Proceedings. 2015 IEEE/RSJ

International Conference on, pages 2666–2671. IEEE, 2015.

[89] Chonhyon Park, Jia Pan, and Dinesh Manocha. Itomp: Incremental trajectory

optimization for real-time replanning in dynamic environments. In Proceedings of the

22nd International Conference on Automated Planning and Scheduling, pages 207–215,

2012.

[90] Takeshi Ohki, Keiji Nagatani, and Kazuya Yoshida. Local path planner for mobile robot

in dynamic environment based on distance time transform method. Advanced Robotics,

26(14):1623–1647, 2012.

[91] Aleksandr Kushleyev and Maxim Likhachev. Time-bounded lattice for efficient planning

in dynamic environments. In Robotics and Automation (ICRA), Proceedings. 2009 IEEE

International Conference on, pages 1662–1668. IEEE, 2009.

[92] Martin Rufli and Roland Siegwart. On the application of the D* search algorithm to

time-based planning on lattice graphs. Proceedings of The 4th European Conference on

Mobile Robots (ECMR), 9:105–110, 2009.

[93] Julius Ziegler and Christoph Stiller. Spatiotemporal state lattices for fast trajectory

planning in dynamic on-road driving scenarios. In Intelligent Robots and Systems (IROS),

Proceedings. 2009 IEEE/RSJ International Conference on, pages 1879–1884. IEEE,

2009.

[94] Kamal Kant and Steven W Zucker. Planning collision-free trajectories in time-varying

environments: a two-level hierarchy. The Visual Computer, 3(5):304–313, 1988.

[95] Paolo Fiorini and Zvi Shiller. Motion planning in dynamic environments using velocity

obstacles. The International Journal of Robotics Research, 17(7):760–772, 1998.

[96] Jur van den Berg, Ming Lin, and Dinesh Manocha. Reciprocal velocity obstacles for

real-time multi-agent navigation. In Robotics and Automation (ICRA), Proceedings. 2008

IEEE International Conference on, pages 1928–1935. IEEE, 2008.

159

[97] Brian C Dean. Shortest paths in fifo time-dependent networks: Theory and algorithms.

Rapport technique, Massachusetts Institute of Technology, 2004.

[98] Luca Foschini, John Hershberger, and Subhash Suri. On the complexity of

time-dependent shortest paths. In Proceedings of the twenty-second annual ACM-SIAM

symposium on Discrete Algorithms, pages 327–341. SIAM, 2011.

[99] Sven Koenig. Agent-centered search. AI Magazine, 22(4):109–131, 2001.

[100] Sven Koenig. A comparison of fast search methods for real-time situated agents. In

Proceedings of the Third International Joint Conference on Autonomous Agents and

Multiagent Systems-Volume 2, pages 864–871. IEEE Computer Society, 2004.

[101] Sven Koenig and Maxim Likhachev. Real-time adaptive A*. In Proceedings of the

fifth international joint conference on Autonomous agents and multiagent systems, pages

281–288. ACM, 2006.

[102] Nathan R Sturtevant and Vadim Bulitko. Scrubbing during learning in real-time heuristic

search. Journal of Artificial Intelligence Research, 57:307–343, 2016.

[103] Venkatraman Narayanan, Mike Phillips, and Maxim Likhachev. Anytime safe interval

path planning for dynamic environments. In Intelligent Robots and Systems (IROS), 2012

IEEE/RSJ International Conference on, pages 4708–4715. IEEE, 2012.

[104] Adi Botea, Martin Müller, and Jonathan Schaeffer. Near optimal hierarchical

path-finding. Journal of Game Development, 1(1):7–28, 2004.

[105] Nathan Sturtevant and Michael Buro. Partial pathfinding using map abstraction and

refinement. In Proceedings of the 20th national conference on Artificial Intelligence

(AAAI’05), volume 3, pages 1392–1397, 2005.

[106] Nathan Sturtevant and Renee Jansen. An analysis of map-based abstraction

and refinement. In International Symposium on Abstraction, Reformulation, and

Approximation, pages 344–358. Springer, 2007.

[107] Robert C Holte, Maria B Perez, Robert M Zimmer, and Alan J MacDonald. Hierarchical

A*: Searching abstraction hierarchies efficiently. In Proceedings of the thirtinth national

conference on Artificial Intelligence – Volume 1 (AAAI’96), pages 530–535, 1996.

[108] Ariel Felner, Nathan R Sturtevant, and Jonathan Schaeffer. Abstraction-based heuristics

with true distance computations. In Symposium on Abstraction, Reformulation and

Approximation (SARA-09), pages 1–8, 2009.

160

[109] Geňa Hahn and Claude Tardif. Graph homomorphisms: structure and symmetry. In

Graph symmetry, pages 107–166. Springer, 1997.

[110] Vadim Bulitko, Nathan Sturtevant, Jiesan Lu, and Timothy Yau. Graph abstraction in

real-time heuristic search. Journal of Artificial Intelligence Research (JAIR), 30:51–100,

2007.

[111] Vadim Bulitko and Greg Lee. Learning in real-time search: A unifying framework.

Journal of Artificial Intelligence Research (JAIR), 25:119–157, 2006.

[112] Joseph C Culberson and Jonathan Schaeffer. Pattern databases. Computational

Intelligence, 14(3):318–334, 1998.

[113] Ning Jing, Yun wu Huang, and Elke A. Rundensteiner. Hierarchical encoded path views

for path query processing: An optimal model and its performance evaluation. IEEE

Transactions on Knowledge and Data Engineering, 10:409–432, 1998.

[114] Hector Gonzalez, Jiawei Han, Xiaolei Li, Margaret Myslinska, and John Paul Sondag.

Adaptive fastest path computation on a road network: a traffic mining approach. In

Proceedings of the 33rd international conference on Very large data bases, pages

794–805. VLDB Endowment, 2007.

[115] Robert C Holte, Jeffery Grajkowski, and Brian Tanner. Hierarchical heuristic search

revisited. In Abstraction, Reformulation and Approximation, pages 121–133. Springer,

2005.

[116] Malte Helmert. The fast downward planning system. Journal of Artificial Intelligence

Research, 26(1):191–246, 2006.

[117] Adam Niewola and Leszek Podsedkowski. L* algorithm–a linear computational

complexity graph searching algorithm for path planning. Journal of Intelligent & Robotic

Systems, pages 1–20, Dec 2017.

[118] Robot Operating System (ROS). http://ros.org.

[119] Gregory Dudek and Michael Jenkin. Computational principles of mobile robotics.

Cambridge University Press, 2010.

[120] C Samson and K Ait-Abderrahim. Mobile robot control, part 1: Feedback control of a

non-holonomic wheeled cart in cartesian space. INRIA Report, 1288, 1990.

161

[121] Maciej Przybylski, Daniel Koguciuk, Barbara Siemiątkowska, Bogdan

Harasymowicz-Boggio, and Łukasz Chechliński. Integration of qualitative and

quantitative spatial data within a semantic map for service robots. In Szewczyk R.,

Zieliński C., and Kaliczyńska M., editors, Progress in Automation, Robotics and

Measuring Techniques. Advances In Intelligent Systems and Computing, vol. 351, pages

223–232. Springer, Cham, 2015.

[122] Elżbieta Roszkowska. High-level motion control for workspace sharing mobile robots.

In Kozłowski K., editor, Robot Motion and Control 2007. Lecture Notes in Control and

Information Sciences, vol. 360, pages 427–436. Springer, London, 2007.

[123] Igor Wojnicki, Sebastian Ernst, and Wojciech Turek. A robust planning algorithm for

groups of entities in discrete spaces. Entropy, 17(8):5422–5436, 2015.

[124] Włodzimierz Kasprzak, Wojciech Szynkiewicz, Dimiter Zlatanov, and Teresa Zielińska.

A hierarchical CSP search for path planning of cooperating self-reconfigurable mobile

fixtures. Engineering Applications of Artificial Intelligence, 34:85–98, 2014.

162

List of Algorithms

3.1 Forward search. 33

3.2 Backward search. 33

3.3 Roadmap construction. 34

3.4 RRT construction. 35

3.5 Kinodynamic RRT. 36

4.1 Procedures common for the D* Lite and D* Extra Lite algorithms. 40

4.2 D* Lite (optimized version) procedures. 45

4.3 D* Extra Lite procedures. 47

4.4 CUTBRANCH() procedure of the D* Extra Lite algorithm for domains in which

Succ(s) ≡ Pred(s). 54

5.1 Anytime repairing A* (ARA*) . 68

5.2 Anytime D* (AD*) . 70

5.3 AD*-Cut. Required parameters: εinit, εstep. 73

6.1 Main procedure common for real-time algorithms. 98

6.2 LRTA* heuristic value update. 99

7.1 Switchback algorithm, where i denotes the abstraction level and i = 0 is the

base level. 115

7.2 Real-time Switchback algorithm; functions modified with respect to

Algorithm 7.1, where i denotes the abstraction level and i = 0 is the base level. 123

7.3 Real-time Switchback main function. 124

163

Index

A*, 17, 32
abstraction transformation, 107
action, 28, 29, 77, 78, 137

action space, 28, 77
action-event synchronization, 91, 94, 136

AD*, 67, 70
AD*-Cut, 73
admissible heuristic, 17, 32

AltO, 111

anytime search, 17, 67
ARA*, 68, 71, 102

classical refinement, 110
collision, 24

configuration, 23
configuration space, 23, 77

configuration-time space, 78
cost function, 30, 81, 91, 138

cost-map, 81

D* Extra Lite, 47
D* Lite, 39, 45, 69

differential-drive robot, 36, 131
dispersion, 26

dynamic constraints, 27

dynamic environment, 15

event, 84
exhaustive search, 32

graph, 29, 107

grid, 26

heuristic function, 32
heuristic search, 17, 32
homomorphism, 107

incremental search, 15, 39
inverse transition function, 31

kinematic constraints, 27, 132

kinodynamic motion planning, 109

kinodynamic planning, 28

label (graph), 109

local motion planner, 34

local search, 18, 98

LRTA*, 98

monotonic refinement, 110

narrow passages, 26

non-holonomic constraints, 27, 132

optimality, 17, 32

parent, 31
path-marking, 111

planning in an unknown (or partially-known)

environment, 15

potential field, 37
predecessors, 31
principle of optimality, 88

probabilistic roadmap (PRM), 26

164

probabilistically complete, 26, 36

quotient, 108

Rapidly Exploring Random Tree, 35
real-time search, 98, 121

Real-Time Switchback, 122
refinement, 109

region of an inevitable collision (RIC), 81

regular lattice, 26
road-map, 26
robot, 17, 23

safe interval, 85, 86
safe state, 122

sampling-based planning, 26

search-tree, 32
SLAM, 25

state, 28, 77

state lattice, 28
state space, 77

state-lattice search, 29
state-space, 28
state-time space, 78, 78

static environment, 15
successors, 31

Switchback, 112, 115

time-consistency, 88
time-dependent networks, 88

time-dependent planning, 15, 109

trajectory tracking, 140

transition function, 31

visibility graph, 26

Voronoi diagram, 26

Voronoi field, 37

workspace, 23

165

