
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





Streszczenie

Obrazowanie ilościowe jest źródłem ważnych informacji na temat komórek i wycinków

tkanek. Najpopularniejszym narzędziem wykorzystywanym w tym celu jest optyczna tomo-

grafia dyfrakcyjna (OTD), która jest techniką nieniszczącą i niewymagającą barwienia. Szcze-

gólną popularność w środowisku medycznym zyskała technika OTD z ograniczonym zakresem

kątowym projekcji (OTDOK). Ograniczony zakres kątowy skutkuje jednak zniekształconymi

rekonstrukcjami tomograficznymi, dlatego kluczowe jest opracowanie dedykowanych metod

przetwarzania danych do tej metody.

W ramach rozprawy doktorskiej opracowano pełną ścieżkę przetwarzania danych pozyska-

nych z układu OTDOK w celu dokładnej rekonstrukcji rozkładu trójwymiarowego współczyn-

nika załamania w strukturach biologicznych. W pracy zaproponowano nową procedurę rekon-

strukcji tomograficznej, nazwaną TVIC (ang. Total Variation Iterative Constraint). Metoda

wykorzystuje minimalizację wahania rekonstrukcji w celu odtworzenia granic obiektu oraz al-

gorytm Gerchberga-Papoulisa w celu obliczenia rozkładu współczynnika załamania wewnątrz

tych granic. Metoda ta w znaczący sposób zmniejsza zniekształcenie zrekonstruowanych obiek-

tów biologicznych oraz błąd rozkładu współczynnika załamania. Aby zbadać skuteczność za-

proponowanej techniki, przeprowadzono szereg symulacji na dedykowanych fantomach nume-

rycznych. Testy te zawierają porównanie wyników otrzymanych metodą TVIC z rekonstruk-

cjami obliczonymi algorytmami referencyjnymi. Przeprowadzono też analizę zbieżności oraz

badanie wpływu liczby projekcji na jakość rekonstrukcji tomograficznej. Wyniki potwierdzają,

że wykorzystanie strategii TVIC skutkuje uzyskaniem rekonstrukcji z wyraźniejszymi krawę-

dziami obiektu, bez artefaktów typowych dla OTDOK oraz z poprawionymi wartościami roz-

kładu współczynnika załamania. Obserwacje te potwierdziły wyniki eksperymentów w których

mikro-kulka oraz komórka fibroblastu mierzone były w układzie OTDOK i zrekonstruowane

przy użyciu strategii TVIC oraz metod referencyjnych.

Dodatkowo, w celu zwiększenia możliwości stosowania OTDOK, opracowano metodę zwięk-

szenia głębi ostrości. Realizuje się ją poprzez wprowadzenie soczewki zmiennoogniskowej do

układu optycznego OTDOK oraz opracowanie dedykowanego przetwarzania danych. W me-

todzie tej obliczana jest seria rekonstrukcji tomograficznych z różnym przeogniskowaniem, a

końcowy wynik uzyskiwany jest poprzez zszycie fragmentów rekonstrukcji znajdujących się w

zakresie syntetycznej głębi ostrości. Skuteczność tej techniki potwierdzają wyniki pomiarów

mikrokulki, komórki fibroblastu i histologicznego wycinka tkanki.

Słowa kluczowe: optyka, cyfrowa mikroskopia holograficzna, optyczna tomografia dyfrak-

cyjna, algorytmy rekonstrukcji tomograficznej, oszczędne próbkowanie, mikro-struktury biolo-

giczne.



Abstract

Three-dimensional imaging of biological specimens provides important information on biol-

ogy of cells and tissue samples. The most popular tool for this purpose is optical diffraction

tomography (ODT) which is a label-free and non-destructive technique. For the investigation

of bio-samples, limited angle ODT (LAODT) is especially promising as its mode of operation

is suited for the microscopic measurement convention at medical and biological communities.

However, in LAODT projections of a specimen are captured within a limited angular range

which leads to distorted reconstructions of the refractive index. Thus, it is crucial that dedicated

reconstruction methods are developed.

The objective of the Thesis is to develop a complete processing path for data provided by

the LAODT system with the aim of accurate reconstruction of 3D refractive index distribution

in biological specimens. In the Thesis the novel tomographic reconstruction strategy, called

Total Variation Iterative Constraint (TVIC), is proposed. It is a two-stage approach where total

variation minimization retrieves the distortion-free external boundaries of the sample and the

Gerchberg-Papoulis algorithm reconstructs the refractive index distribution within these bound-

aries. It reduces significantly the geometrical distortion and the errors in refractive index value

in the case of biological structures with non-piecewise constant refractive index. To prove the

effectiveness of TVIC, extensive numerical simulations on dedicated phantoms are carried out.

These tests include comparison of TVIC results with reconstructions calculated with reference

techniques: Gerchberg-Papoulis and Direct Inversion methods, algorithm convergence analysis

as well as dependence of the reconstruction quality on the number of input projections. The

results prove that when TVIC strategy is used, reconstructions with sharper object boundaries,

limited LAODT artifacts and with more correct refractive index distribution of internal struc-

tures are obtained. These observations are confirmed by physical experiments where a PMMA

micro-sphere and a fibroblast cell are measured with the LAODT setup and are reconstructed

with TVIC and reference methods.

Additionally, in order to enhance the applicability of LAODT, the method of increasing the

depth of field is developed. This is realized through insertion of a focus-tunable lens into the

LAODT optical setup and through development of dedicated data processing. In this method,

a series of defocused tomographic reconstructions is calculated and the final result is created

by stitching those fragments of the reconstructions that are within the synthetic depth-of-field.

The effectiveness of this technique is proved with experimental analyses performed on a micro-

sphere, fibroblast cell and histological tissue slice.

Keywords: optics, digital holographic microscopy, optical diffraction tomography, tomo-

graphic reconstruction algorithms, compressed sensing, biological micro-structures.
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Chapter 1

Introduction

1.1 Motivation

In the year 2015, almost 1 in 6 deaths was caused by cancer, overtaking cardiovascular disease

in some countries [1]. This number will supposedly double during the next 20 years. Not sur-

prisingly, enormous effort is currently directed towards new techniques for cancer treatment. A

significant amount of money is spent on projects like Cancer Moonshot in the USA ($1.8 bil-

lion from 2017 to 2024) [2] or projects under European Union Seventh Framework Programme

(e 1.5 billion from 2007 to 2013 with twice as much funding under the Horizon 2020 program)

[3]. One of the key priorities in these projects is non-destructive, optical in vitro analysis of the

process of transformation from a healthy to a cancer cell.

Another trend visible today is the shift from standard towards digital histology, where histo-

logical samples are automatically measured, instead of just being visualized. After the specimen

is analyzed, its digital copy is stored on a computer, where it can either be evaluated by a medi-

cal doctor or by specialized software.

The common factor in the above examples is the need for a quantitative, fast and reliable

method for measuring biological specimens. Until recently, the main tool for in vitro investi-

gation of biological specimens was the standard optical microscopy, which provides qualitative

information about the optical field intensity values integrated along the optical axis, which then

can be assessed by a medical doctor. To increase the physiological contrast, multiple histolog-

ical stains are utilized in the process. However, this technique highly depends on the expertise

of a doctor and has several disadvantages and limitations. Firstly, the resulting qualitative im-

age of a sample given by the microscope setup strongly depends on the concentration of the

stains in the structures of an analyzed specimen, which cannot be precisely controlled. As an

effect, images of the same biological structure differ between laboratories worldwide and thus

it is difficult (if not impossible) to create objective standards for automatic identification of the
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investigated cells based on these images. What is more, due to lack of repeatability of the re-

sults, it is not known whether the achieved results are associated with the investigated cellular

processes or with the sample preparation itself. Secondly, the staining procedure can be time

consuming and it increases the cost of a sample preparation stage. Thirdly, the optical mi-

croscopy creates a two-dimensional image only, where the in-focus cell structures overlap with

the blurred background. This makes it difficult to properly assess cell anatomy and requires an

experienced histology doctor. The main advantages of fluorescence microscopy are enormous

popularity, relatively low price and large database with the results.

Other techniques that gained popularity are fluorescence and confocal microscopy. In the

case of a fluorescence imaging, fluorophores are introduced into an investigated specimen.

When illuminated with a specific wavelength, they emit a different wavelength which can be

isolated by the optical setup. Depending on the type of a fluorophore, it is accumulated in dif-

ferent inner structures of a measured bio-sample, and thus this technique is characterized with

remarkable functional contrast. An enhancement of the fluorescent microscopy is the confocal

microscopy, in which two pinholes are introduced into the optical setup. The purpose of these

pinholes is to couple only a small region (ideally, a point) of an investigated sample with the de-

tector. This region can be localized inside the object, so when the sample is scanned for several

depths, a 3D high-resolution image of the fluorophore distribution is created. It should be noted

that confocal microscopy can be realized without fluorescence, however this mode of operation

is the most popular one for biological studies. Unfortunately, fluorescent-based techniques suf-

fer from phototoxicity of the fluorophores used during the measurement, which can alter the

properties of an analyzed bio-sample. Also, these methods are subject to photobleaching which

significantly limits the time allowed for the measurement of a single object. Furthermore, only

qualitative information on the concentration of fluorophores is provided.

These problems inspired researchers to develop a new type of optical techniques, namely

quantitative phase imaging (QPI) methods. In general, QPI aims to quantitatively measure the

phase of an optical field in an object plane, which then can be used to retrieve the informa-

tion about refractive index values in the analyzed sample. Similarly to optical microscopy,

QPI techniques are non-destructive, however, no biomarkers are required. This means that the

measurements of a sample should give the same results regardless of the laboratory where the

measurement has been conducted. This allows to create objective standards in evaluation of bi-

ological specimens. What is more, QPI can potentially provide possibility to measure live cells

in real-time. Among all QPI methods, two have gained more popularity: digital holographic

microscopy (DHM) [4] and optical diffraction tomography (ODT) based on holographic projec-

tions [5, 6]. DHM, despite being a quantitative technique, returns a two-dimensional integrated

phase distribution only. A very strict conditions have to be fulfilled for DHM to provide refrac-

tive index distribution in the object plane and most biological samples do not meet these require-
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ments. ODT, on the other hand, provides information about three-dimensional (3D) refractive

index distribution. This technique is similar to Computed Tomography: an analyzed object is

illuminated from various directions and a series of projections is acquired. These projections

are then numerically reconstructed to provide 3D refractive index distribution of an investigated

sample. In the most common setup, the micro-specimen is placed in a chamber which then is ro-

tated by 360◦. A stationary source and detector are used to capture object projections during this

rotation. This configuration is called full-angle ODT (FAODT). Its main advantage is the high

quality of 3D reconstructions. Its main drawback is associated with the fact that most biological

specimens cannot be rotated unperturbed and thus this method is dedicated mainly to technical

samples. Another type of ODT is limited-angle ODT (LAODT), where the sample and detec-

tor are stationary while the illumination direction is changing. With this type of tomography

biological micro-objects can be investigated directly from Petri dishes. LAODT is thus a per-

fect candidate for precise and nondestructive method for quantitative in-vitro analysis of cancer

cells. However, illumination scanning cannot cover 360◦ angular range. This, in turn, leads to

distorted reconstructions of refractive index distribution. In recent years, multiple tomographic

reconstruction algorithms that aim to minimize this distortion have been developed [7]. Until

now, only a few methods proved to be successful in providing distortion-free reconstructions

in LAODT and none of them are dedicated to investigation of biological micro-samples, which

significantly differ from the technical ones in terms of refractive index distribution [8–10]. De-

velopment of a tomographic reconstruction algorithm which would provide highly accurate 3D

refractive index distribution while being consistent with the characteristics of cellular structures

would thus be an important milestone and a significant support in the fight against cancer and

in general in investigation of biological micro-objects.

1.2 Aim of the Thesis

The main objective (MO) is to develop the complete processing path for data (projections)

provided by the limited angle optical diffraction tomography system with the aim of accu-

rate, label-free quantitative 3D investigation of biological specimens.

The label-free nature of the measurement refers to the fact that in a standard biological or

histological laboratory, numerous stains are used. Some, like hematoxylin and eosin, help to

differentiate cell nuclei from cytoplasm. Other, like Papanicolaou stain, are used to differentiate

whole cells from each other. In the Thesis, no stain is allowed during sample investigation. The

differentiation of cell structures or whole cells is based only on 3D refractive index distribution.

One of the most versatile methods of acquiring projections in optical tomography is holog-

raphy. Thus, in the Thesis, all the projections of an analyzed sample are holograms acquired in

an image plane. Therefore, the first task which leads to MO is to develop the data preprocessing
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and phase retrieval methods with the aim to provide high quality input data for tomographic

reconstruction algorithms.

The second task is to develop the tomographic reconstruction algorithm devoted to LAODT

which significantly limits the distortion of reconstructed biological structures that is due to lim-

ited angular range of acquired projections. In general, biological structures highly differ from

each other in terms of optical characteristics and number of internal structures. Some sam-

ples, like red blood cells, have a uniform structure with piecewise-constant refractive index

distribution. For these specimens, a strong regularization technique, called Total p-Variation

minimization, can be used in the tomographic reconstruction procedure to limit the distortion

of the calculated reconstruction. Other samples, like most cancer cells, have quasi piecewise-

constant structures (e.g. nucleoli) in a non-piecewise-constant medium (cytoplasm). When the

Total p-Variation minimization is used to calculate the reconstructions of such samples, the re-

fractive index distribution in the reconstruction is forced to be piecewise-constant which results

in erroneous results. There are no strong, dedicated regularization methods that could be ap-

plied to such biological structures. Thus, the tomographic methods described in the Thesis are

dedicated to weakly scattering biological micro-objects with non-piecewise-constant refractive

index distribution. Such broad definition of a target object highly limits the number of regular-

ization techniques that can be utilized in the developed algorithm, but increases its applicability.

To realize the second task under the assumptions described above, I state the following

research hypothesis: In LAODT it is possible to minimize the distortion in tomographic re-

constructions of biological samples through a dedicated data processing procedure which

includes regularization techniques based on Total p-Variation minimization, while pre-

serving the non-piecewise-constant refractive index distribution of the specimens.

The research carried out to prove the hypothesis provides the background to realize the third

task, which is focused on increasing the depth of field of the limited angle optical diffraction

tomography and through this extending even more the applicability of LAODT. The shallow

depth of field results in non-uniform resolution in the calculated reconstruction. This, in turn,

limits the quantitative nature of the measurement. Thus, a robust method for the calculation of

tomographic reconstructions with uniform resolution in the whole measurement volume will be

developed.

It is important to note that the procedures created for LAODT have to provide fully quantita-

tive refractive index analysis. Therefore, it is necessary to specify the metrological requirements

for these procedures. Thus, the algorithms described in the Thesis aim to reconstruct transpar-

ent and semi-transparent biological micro-samples with the refractive index error below 0.01,

where the error is understood as the maximum difference between the reconstructed refractive

index and the true refractive index distribution within the volume of an investigated sample

introduced by the numerical procedures described in the Thesis. This constraint guarantees
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reliability of the developed numerical method.

1.3 Structure of the Thesis

The Thesis is organized as follows. In Chapter 2 a short overview of techniques used to vi-

sualize and measure the phase distribution associated with analyzed biological specimens is

carried out. Here, a detailed description of ODT and its modification: LAODT is also given. In

Chapter 3 a full analysis of the tomographic reconstruction approach proposed in this Thesis,

called TVIC, is conducted. In Chapter 4 a new measurement procedure for the extended depth-

of-field tomography is proposed. It combines LAODT, focus-tunable electrical lens and TVIC

reconstruction strategy. Next, in Chapter 5 experimental verification of the tomographic proce-

dures proposed in the Thesis is carried out on technical and biological micro-samples. Finally,

conclusions and future works are described in Chapter 6.
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I also direct my words of gratitude to dr Dariusz Śladowski from Medical University of

Warsaw, Department of Transplantology and Central Tissue Bank, and dr Ewa Skrzypek from

Medical University of Warsaw, Department of Pathology, for the preparation of biological sam-

ples and inspiring discussions regarding obtained results.
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Chapter 2

State of the art

During the last decades, a slow but steady shift from imaging absorption coefficient of the

investigated biological specimens (like in classical biological microscopy) to measuring phase

values associated with these specimens is observed. This phase carries information about the

refractive index distribution of analyzed samples, which, in turn, may be translated into dry

mass density - a key parameter describing biological structures.

For many years, the only possibility to visualize the phase of investigated specimens was uti-

lization of qualitative methods like Zernike phase contrast microscopy [11] or Nomarski inter-

ference contrast [12]. The greatest weakness of these techniques is that they do not give access

to the values of the phase - they only visualize it. Thus, new imaging techniques, called Quan-

titative Phase Imaging (QPI) methods, which give access to the values of the phase have been

developed and are currently one of the most promising imaging tools in biology and medicine.

Thus, in this section a short overview of the most important QPI methods is presented.

2.1 Quantitative phase imaging in biological studies

The most basic technique that allows us to measure integrated phase values of transparent and

semi-transparent samples is Digital Holographic Microscopy (DHM) [13]. This method has

been implemented in different configurations, including lensless [14, 15] or Mach-Zehnder in-

terferometer [16–18] setups. In DHM the sample is placed between the coherent light source

and the detector. In most configurations, a microscope objective is also used to match object spa-

tial bandwidth to camera sampling capabilities and image the sample onto the detector. When

the sample is illuminated with a light source, the effect of the interference between the light

diffracted by the object and a reference beam is recorded. In the case of the lensless DHM, the

reference beam is the part of the illuminating beam which was not diffracted by the specimen.

In the Mach-Zehnder setup, the reference beam is introduced by a separate reference arm of the
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interferometer. Nevertheless, in both cases by utilizing phase retrieval approaches [19–22], the

phase, integrated along the illumination direction, can be calculated. This integrated phase may

be, under certain conditions, used to determine the refractive index distribution, the topography

map or the dry mass distribution of analyzed samples. It is therefore used in numerous clinical

studies [23, 24].

A modification of the DHM approach is the Fourier Ptychographic Microscopy (FPM) [25,

26]. In this method, no reference wave is used to calculate the phase associated with the investi-

gated sample. Instead, multiple partially-coherent sources, usually distributed on a flat surface,

illuminate the sample from different directions. The range of illumination angles is, however,

highly limited. The sources are turned on one by one, so that at a time only 1 source is illumi-

nating the object. A microscope objective placed behind the sample is imaging the object onto

a detector which captures projections. The idea behind FPM is to retrieve the high resolution

integrated phase information of an analyzed specimen by iteratively processing low resolution

intensity distributions from each projection. The method was thoroughly tested and proved

to give satisfactory results especially in the case when relatively large field of view has to be

investigated.

Another method which gained popularity in recent years is the spatial light interference mi-

croscopy (SLIM) [27]. The technique returns a quantitative information about the integrated

phase associated with an investigated sample, which, under certain conditions, can be trans-

formed into the refractive index distribution. In short, the principle of operation of SLIM is

based on the Zernike phase contrast method. However, in SLIM the phase delay between the

scattered and unscattered parts of the object illuminating beam can be precisely controlled with

a spatial light modulator. Thus, a standard method of temporal phase shifting can be applied

[22] and the integrated phase can be retrieved. The unquestionable advantage of this approach

is the possibility of transforming a standard biological microscope into the SLIM device by

simply attaching a small module to the body of the microscope. The disadvantage is the fact

that in this configuration only the temporal phase shifting method can be applied which limits

the imaging speed. Also, only the integrated phase is retrieved which makes it impossible to

analyze multi-layered structures. In other cases, however, the method proved to be a highly

useful one [28, 29].

Due to the limitations described above, SLIM has been upgraded and the spatial light inter-

ference tomography (SLIT) method has been developed [30]. In SLIT, a series of SLIM images

is acquired for different positions of an analyzed sample along the optical axis. Due to the fact

that in SLIT a low coherence source is used, the coherence gating is possible, which guarantees

a decent sectioning property of SLIT. Thus, when a series of defocused images are stitched, a

pseudo 3D reconstruction can be obtained. In order to increase the resolution of the calculated

reconstruction, a deconvolution of the reconstruction with the experimentally calculated point
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spread function is carried out. When compared to SLIM, SLIT offers increased usability at a

cost of increased price and system complexity. However, since SLIT does not involve object

rotation with respect to the illuminating beam, the results obtained with this method are not

fully three dimensional.

2.2 Optical diffraction tomography

The techniques described above do not provide the full 3D refractive index distribution. An

alternative to these techniques is the optical diffraction tomography (ODT) [31, 32]. ODT is a

noninvasive, label-free method that gives a fairly easy access to the 3D refractive index distri-

bution of an investigated sample. In ODT the sample is illuminated from numerous directions

with a laser beam, and the diffraction patterns of light that went through the investigated object

are recorded by an appropriate detector (CCD or CMOS camera) as holograms. In the most

popular implementation of ODT, after the first holographic projection is captured, the object is

rotated by ∆θ and another projection is acquired. The source and detector are both stationary.

After capturing a series of projections (holograms), the data are preprocessed to prepare

them in the form required by a tomographic reconstruction algorithm. Here, the most important

procedure is phase and amplitude retrieval and phase unwrapping. The phase and amplitude

retrieval methods are solely dependent on the optical design of the tomography setup. If the

carrier frequency is introduced in the ODT detection plane, the Fourier transform method [20]

or the spatial carrier phase shifting method [21] are used to demodulate the phase from a holo-

gram. Alternatively, if no carrier frequency is present, but the phase of the reference beam can

be controlled, the temporal phase shifting algorithm can be employed [22]. There are also tech-

niques for phase demodulation when there is no reference arm, like those utilizing transport of

intensity equation [33], however, they are rarely used in ODT. Regardless of the method used,

after this step the amplitude and wrapped phase distributions from each projection are obtained.

In the next step, phase unwrapping has to be applied to the wrapped phase. One of the most

popular approaches adapted by multiple research groups is the algorithm based on sorting by

reliability [34]. However, other techniques like phase unwrapping via graph cuts [35] are also

used.

When phase and amplitude distributions are retrieved and processed, they are stacked on

top of each other to form the phase and amplitude sinograms. It should be noted that when this

process is finished, a complex amplitude distribution u from each holographic projection can be

calculated, according to Eq. 2.1.

u = A · exp(iφ) (2.1)

where A and φ are amplitude and phase, respectively. The projection acquisition setup and
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Figure 2.1: Projection acquisition scenario in ODT (a) and the resulting phase (b) and amplitude

(c) sinograms. ~km - wave vector representing the illuminating plane wave; θ - object rotation

angle; u - retrieved complex amplitude.

an example of sinograms are presented in Fig. 2.1. Finally, based on the complex amplitudes,

the object function is retrieved by means of dedicated numerical algorithms.

ODT can be used to investigate both technical and biological microsamples. Depending on

the type of an analyzed sample, different methods of object rotation have been utilized. When

technical samples are under study, the most widely used method is attaching the sample directly

to a motorized rotation stage [36, 37]. When biological specimens are measured, it is a common

approach to insert these structures into a glass capillary or a hollow-core optical fiber which then

is connected to the motorized stage [38, 39]. Alternative solutions include optical tweezers [40],

which, however, due to high intensity levels may harm the investigated biological cell.

2.2.1 Optical design

In terms of the optical design of the ODT setup, three configurations are particularly popular.

The most widely used is the ODT based on the old concept of the Mach-Zehnder interferometer

[41–45], presented in Fig. 2.2(a). In this configuration, the laser beam is divided by a beam

splitter into the object beam, which later illuminates an investigated sample, and the reference

beam which propagates in free space and interferes with the object beam at the detector plane.

The main advantage of this setup is the direct access to the object and reference arms. It is

thus relatively easy to utilize different methods for phase retrieval, like the Fourier or spatial

carrier phase shifting method (by tilting the reference arm with respect to the object beam

which results in carrier fringes at the detector plane) or the temporal phase shifting method

(by substituting one of the mirrors in the Mach-Zehnder setup with a piezoelectric mirror).

Undoubtedly, the main drawback of this setup is its instability, which is directly associated with

the fact that the reference and object beams do not share a common path and thus are subject

to different environmental disturbances. Still, however, its versatility makes it the most popular

configuration used in ODT.
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One alternative to the Mach-Zehnder configuration is the common-path setup [46–48],

shown in Fig. 2.2(b). The main concept behind this technique is splitting the laser beam into

the object and reference arms after the light passes through an investigated sample. From the

laser source down to the specimen, only 1 beam is present. Behind the sample, a diffraction

grating is placed in the image plane of the imaging microscope objective. As an effect, several

copies of the object field are created as diffraction orders, from which all but two are filtered

out. From the remaining two diffraction orders, one is low-pass filtered. Finally, both orders

interfere at the detector. Due to the low-pass filtering of one of the beams, the resulting inter-

ference pattern resembles the one obtained in the Mach-Zehnder setup, where the object beam

interferes with the plane wave. Thus, standard phase retrieval algorithms can be used. The

main advantage of this setup is its compactness and relatively high immunity to environmental

disturbances. However, in this setup it is relatively difficult to obtain plane wavefront in the

reference arm which may complicate the processing of the data and limit the accuracy. Also, it

is difficult to modify the frequency of the carrier fringes, as it depends only on the parameters

of the diffraction grating.

The other, less popular alternative, is ODT based on the pseudo-shearing interferometry

[39], presented in Fig. 2.2(c). In this type of tomography, similarly to the common-path setup,

the object field is divided into two beams after passing through the specimen. However, in this

configuration the object field is divided equally by a beam splitter. The two beams are reflected

by reference mirrors and interfere at the detector plane. The reference beam is tilted by a mirror

in such a way that only the part of this beam which is not perturbed by the sample interferes with

the object beam. The main disadvantage of this setup is the fact that it is applicable to analysis

of samples which cover only a small part of the field of view. Without doubts, the advantage of

this method is a very simple optical system design.

2.2.2 Born and Rytov approximations

From the mathematical point of view, investigation of samples with ODT belongs to the class

of inverse problems [49]. This means that only external data (object projections captured by

the camera) and the measurement system (ODT optical setup) are known, and the input data

(object function of an analyzed specimen) has to be retrieved. In order to successfully retrieve

an object function, dedicated numerical procedures have been developed. In this section, a brief

description of the basis of these procedures is presented. This description is provided as an

introduction to the limited angle ODT, which is the primary approach used in this Thesis, and

which is described in further sections.

In the case of Computed Tomography, a straight line approximation can be adopted, which

states that the rays of incident electromagnetic radiation propagate in straight lines through

the sample [50]. When this approach is followed, the radiation is treated mainly as a stream
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of particles and no light diffraction is taken into account. This approximation significantly

simplifies tomographic reconstruction procedures. However, it can be applied only to radiation

of very short wavelength; in practice, mainly to x-rays. In the case of ODT, such approximation

cannot be employed, as there is a significant part of light that diffracts when it propagates

through an investigated object. Thus, a more general model of light propagation has to be

used if high resolution quantitative tomographic reconstructions are to be calculated. Here, the

mathematical description of ODT will be presented based on [43, 51–55].

Every monochromatic wave propagating through a measurement volume with no biological

sample inserted has to obey the homogeneous Helmholtz equation:

(∇2 + k2
m)u(~r) = 0 (2.2)

where km is the wavenumber in the medium in which the wave propagates:

km =
2πnm

λ
(2.3)

where nm is the complex refractive index of the immersion liquid and λ is the wavelength

of the utilized laser light in vacuum.

When the same wave propagates through some scattering medium, like a biological speci-

men, a more general version of Eq. 2.2 is necessary. Thus, the wavenumber km is replaced with

k described as:

k(~r) = km(1+
nσ (~r)

nm
) (2.4)

where nσ (~r) is the local deviation of the refractive index of the propagation medium from

nm and is associated with the presence of the investigated sample in the measurement volume

of the ODT.

When the wavenumber from Eq. 2.4 is introduced into Eq. 2.2, the inhomogeneous version

of the Helmholtz equation is obtained:

(∇2 + k2
m)u(~r) =− f (~r)u(~r)

with

f (~r) = k2
m[(

n(~r)

nm
)2 −1]

(2.5)

where f (~r) is the scattering potential (also called the "object function" [43]) which describes

the inhomogeneity associated with the presence of an investigated bio-sample and n(~r) is the

absolute refractive index of the investigated sample: n(~r) = nm +nσ (~r).

We can represent the total field u(~r) from Eq. 2.5 as the sum of two components:

u(~r) = u0(~r)+us(~r) (2.6)
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where u0(~r) is the incident field which propagates in free space unperturbed - it is the solu-

tion to the homogeneous Helmholtz equation (Eq. 2.2). The component us(~r) is the scattered

field, exclusively associated with the scattering potential f (~r). In order to retrieve the infor-

mation about the refractive index distribution inside the analyzed specimen, us(~r) has to be

calculated. When the total field in the form presented in Eq. 2.6 is substituted to Eq. 2.5, and

when the fact that the incident field u0(~r) must obey the homogeneous Helmholtz equation (Eq.

2.2) is taken into account, the inhomogeneous Helmholtz equation can be written as:

(∇2 + k2
m)us(~r) =− f (~r)u(~r) (2.7)

By employing the Green’s function, the solution to Eq. 2.7 can be written as:

us(~r) =
∫

G(|~r−~r′|) f (~r′)u(~r′)d3~r′ (2.8)

Unfortunately, the equation 2.8 cannot be solved analytically for the us(~r), as the total field

u(~r) in the integrand depends on the scattered field us(~r) itself, according to Eq. 2.6. There

are, however, approximations that can be adopted when specific conditions are met. These ap-

proximations linearize the relationship between the two-dimensional scattered field us(~r) and a

three-dimensional scattering potential f (~r) of an investigated sample. The two methods, called

first order Born and Rytov approximations, are the basis of modern optical diffraction tomog-

raphy and are obligatory to use if high resolution results are to be obtained.

Born approximation

The first order Born approximation assumes that us(~r) is small compared to u0(~r). Under this

assumption, the total field u(~r) in the Eq. 2.8, can be substituted with the incident field u0(~r),

resulting in Eq. 2.9, which now can be solved.

us(~r)≈ ub(~r) =
∫

G(|~r−~r′|) f (~r′)u0(~r′)d
3~r′ (2.9)

This approximation is valid only when the phase difference between the scattered and in-

cident fields is much smaller then π radians [52] (although some sources mention π/2 [43]

and 2π [51]). To analyze the applicability of the 1st order Born approximation, one can cal-

culate the phase delay introduced by a typical biological cell of thickness d = 10µm, with the

refractive index difference ∆n between the cell and the surrounding medium equal to 0.04 and

a wavelength of light λ = 632.8nm. The phase difference is then equal to:

∆φ = k ·OPD =
2π

λ
d∆n ≈ 4[rad] (2.10)

where OPD is the optical path difference.
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Clearly, the 1st order Born approximation is not applicable to analysis of biological speci-

mens, as the maximum phase delay constraint is violated.

Rytov approximation

In order to describe the second approximation, called the 1st order Rytov approximation, the

total field u(~r) is rewritten into the form:

u(~r) = exp(Ψ(~r)) (2.11)

where Ψ is the complex phase function. When the total field u(~r) in Eq. 2.5 is substituted

with the complex phase form, it gives:

(∇2 + k2
0)u0(~r)Ψ(~r) =−[(∇Ψ(~r))2 + f (~r)]u0(~r) (2.12)

Since the above equation is just another form of Eq. 2.5, it cannot be solved directly. How-

ever, the Rytov approximation assumes that the term (∇Ψ(~r))2 = 0. Also, by analogy to Eq.

2.6, the complex phase of the total field can be represented as the sum of the complex phase

Ψ0(~r) associated with the incident field, and Ψs(~r) associated with the scattered field:

Ψ(~r) = Ψ0(~r)+Ψs(~r) (2.13)

It should be noted that the complex field Ψs(~r), often called the Rytov field, can be expressed

as:

Ψs(~r) = ln(
u(~r)

u0(~r)
) (2.14)

The above formulas and approximations simplify the Eq. 2.12 into the form which now can

be solved for the Ψs(~r). The solution is presented in Eq. 2.15:

Ψs(~r) =
1

u0(~r)

∫

G(|~r−~r′|) f (~r′)u0(~r′)d
3~r′ (2.15)

When one compares the Eq. 2.15 with Eq. 2.9, a clear relation is visible:

Ψs(~r) =
ub(~r)

u0(~r)
(2.16)

The Rytov approximation can be successfully performed when the gradient of the com-

plex phase is small. Since the complex phase gradient does not depend on the thickness of an

analyzed sample, the Rytov approximation is object-size-independent (in contrast to the Born

approximation).

It is important to note that to calculate the scattered field us(~r) (in the Born approximation)

or complex phase Ψs(~r) (in the Rytov approximation), the u0(~r) field has to be measured. This
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Figure 2.3: Full data processing chain in ODT under Rytov approximation.

is realized by capturing the projections of the measurement volume with no object present - so

called reference projections.

Both approximations described above are the first order ones which relates to the fact that

it is assumed that each point of the analyzed sample is a source of a scattered wave which then

propagates unperturbed to the detector. In other words, no higher order scattering is assumed.

Intuitively, it is thus clear that the Born and Rytov approximations are applicable only when

analysis of weakly scattering samples is carried out.

Since the procedures described in this Thesis are dedicated to the analysis of biological

micro-samples which have relatively small gradients of the refractive index, from now on only

the Rytov approximation will be used. The summary of the data processing chain under the

Rytov approximation is presented in Fig. 2.3.

2.2.3 Fourier Diffraction Theorem

The Rytov approximation described in the previous section allow us to calculate the complex

phase Ψs(~r) from each of the object projections captured by the detector. Now, to calculate the

3D refractive index distribution of an analyzed sample from these fields, the Fourier Diffraction

Theorem (FDT) can be used [52]. When a specimen is illuminated by a plane wave, FDT

relates the 2D Fourier transform of the complex phase Ψs(~r) with a spherical surface (called the

Ewald’s sphere) in the 3D Fourier transform of the scattering potential of the analyzed sample,

as shown in Eq. 2.17 (for the sake of simplicity, 2D tomography has been shown).

21



x

y

t

θ
α

γ

θ

km

us

FOURIER

SPECTRUM

SIGNAL

DOMAIN

kt

us

km

FOURIER

SPECTRUM

(a) (b) (c)

kx

ky

kx

ky

Figure 2.4: Visualization of the Fourier Diffraction Theorem for ODT with object rotation

configuration: (a) projection acquisition step; (b) 2D Fourier spectrum filled with data from 1

projection; (c) 2D Fourier spectrum filled with a set of 36 projections captured within a 360◦

angular range. The red arc in the Fourier spectrum corresponds to the Fourier transform of the

complex phase us. ~km - wave vector representing a plane wave; us - scattered field; ûs - Fourier

transform of the scattered field. Note that the field ûs should be divided by a constant factor

before being written onto the Ewald’s sphere, according to Eq. 2.17.

Ψ̂s(α, l0) =
j

2
√

k2
m −α2

exp( jl0

√

k2
m −α2) f̂ (α,

√

k2
m −α2 − km)

for |α|< km

(2.17)

where Ψ̂s and f̂ are Fourier transforms of Ψs and f , respectively; l0 is the distance of the

detector from the center of the (x,y) coordinate system. It should be noted that most realizations

of ODT consist of an optical imaging setup which conjugates the detector plane with the center

of an analyzed sample, in which case l0 = 0, and so the above equation can be simplified to:

Ψ̂s(α) =
j

2
√

k2
m −α2

f̂ (α,
√

k2
m −α2 − km)

for |α|< km

(2.18)

The theorem is schematically presented in Fig. 2.4. The visualization relates to 2D ODT

with object rotation configuration, where the incident field always propagates perpendicular to

the surface of the detector. When the analyzed object is rotated and consecutive projections

are captured, the Fourier spectrum is filled with Fourier transforms of the scattered fields that

are cast onto rotated arcs. When more projections are acquired, the spectrum becomes filled to

a greater extent. The result of filling the spectrum with data from projections acquired within

360◦ angular range (from θ = 0◦ to θ = 360◦) is presented in Fig. 2.4(c). When all projections

are processed, the spectrum is inverse Fourier-transformed, and the scattering potential of the
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Figure 2.5: (a) Visualization of a 3D spectrum fully filled with Fourier transforms of projections

in the case of ODT with object rotation configuration (only 2 opposite Ewald spheres visible);

(b) presentation of an empty region in the spectrum which takes the shape of an apple core.

sample is reconstructed. The described procedure is the basic tomographic reconstruction al-

gorithm called Direct Inversion. By analyzing Fig. 2.4, one can immediately notice that ODT

offers significantly increased Fourier spectrum coverage compared to DHM, in which only 1

object projection is acquired and thus only 1 Ewald sphere is filled with data.

The procedure described above refers to 2D tomography. However, it can be easily gener-

alized to the 3D case, where each complex phase is a 2D field and its Fourier transform is cast

onto the 3D spherical cap [31, 43]. The 3D version of Fig. 2.4(c) is presented in Fig.2.5(a).

As shown in Fig. 2.4, the radius of the Ewald’s sphere is equal to the wavenumber km.

This relation has very profound consequences. As the wavenumber is inversely proportional

to the wavelength λ , the Ewald’s sphere becomes larger when the wavelength decreases, and,

consequently, the arc flattens. When the wavelength is sufficiently small, like, for example, in

the case of x-ray radiation (λ ≈ 1nm), the arc can be approximated with a straight line without a

significant loss of accuracy. Thus, in the regime of short wavelengths, the FDT transforms into

Projection Slice Theorem, which is widely used in Computed Tomography under the name of

Filtered Backprojection, for the calculation of tomographic reconstructions [50].

2.3 Limited-angle optical diffraction tomography

A subcategory of the ODT is the limited-angle ODT (LAODT), where the sample and the

detector are stationary and the laser beam is rotated to illuminate the investigated object at

various angles. The building blocks of LAODT are shown in Fig. 2.6.

This configuration has three main advantages. Firstly, it guarantees that the analyzed bio-

sample will not be perturbed during the measurement process in contrast to ODT with object
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rotation configuration where the rotation of the biological specimen may result in its displace-

ment, and in consequence, in spoiled reconstructions (the acquired projections are no longer

consistent with each other). Thus, LAODT is more suitable for analysis of biological objects.

Secondly, if LAODT setup is built in vertical configuration, it is perfectly feasible to measure

cells directly from the Petri dish in which they were cultured, instead of utilizing the glass cap-

illary which is the source of serious aberrations in the optical system [38]. This property is

especially important as the vast majority of in-vitro research is conducted with cultured cells.

The last advantage is the fact that controlled rotation of illumination can be realized signifi-

cantly faster than sample rotation. This allows to investigate dynamic processes in biological

micro-objects.

Basically, the principle modules of the data processing chain in LAODT are the same as

in ODT. First, the holographic projections of an investigated sample are captured by the CCD

detector. To carry out the measurement in accordance with the Rytov approximation, the in-

vestigated specimen is then removed from the measurement volume and reference projections

are acquired. The reference data is captured in exactly the same way as the object projections,

so that at the end each object projection is accompanied by a reference projection. This con-

cludes the data acquisition stage. The process of acquiring two object projections in LAODT is

schematically presented in Fig. 2.7

Next, the retrieval of the phase and amplitude is carried out, followed by the phase un-

wrapping procedure. This step is necessary, as the modulus and phase of the complex phase

Ψs(~r) (which has to be calculated according to FDT and Rytov approximation) calculated from
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a complex field with wrapped phase would have discontinuities which spoil the spectrum of

the scattering potential. Since the objects under study are biological micro-samples, the projec-

tions stored in the sinograms have to be transformed into Rytov fields, according to the Rytov

approximation described in Section 2.2.2. Such fields are passed as the input data to a dedi-

cated tomographic reconstruction algorithm to form the 3D refractive index distribution of the

specimen.

2.3.1 Illumination rotation

For LAODT, the same configurations of optical setups can be used as for ODT. Regardless of

the type of the optical system used for the projection acquisition in LAODT, there is a need to

rotate the light beam, so that projections of an investigated sample can be captured for different

illumination angles. In the literature, three main methods have been proposed for this purpose

[56, 57].

The first idea incorporates galvanometer mirrors (GM) in the optical system [43, 58–60].

Originally, GM were devices with a mirror that rotated when electric current has been detected

in the circuit. In optical systems, these instruments are now used for precise tilting of the mirror

with a controlled electric current. The main advantage of the GM is the high frequency of

operation, usually in the range of several kHz. A single GM can rotate around 1 axis, thus a

set of 2 GM is used in LAODT setups to freely deflect the laser beam. The simple operating

principle is a significant advantage of the GM. It’s biggest disadvantage is associated with the

fact that its surface should be conjugate to a sample, which cannot be directly realized when 2

mirrors are incorporated into LAODT setup.

The second concept introduces a digital micromirror device (DMD) into the LAODT setup

[61]. DMD is an array of several hundred thousand mirrors, where the size of a single mirror is

in the range of several micrometers. Each mirror is controlled with electric current and can be

tilted independently. However, most devices allow only for binary tilting, which means that the

mirror may be positioned in one of the two possible states: parallel or tilted with respect to the

DMD substrate surface. Thus, in order to deflect the laser beam, a binary Lee-type hologram

[62], playing the role of an active diffraction grating, is formed by the mirrors. When the

laser beam is reflected from the DMD, it is diffracted into several diffraction orders. A single

diffraction order is then selected as an object illumination beam. By changing the parameters

of the grating, deflection of the object beam can be controlled. One of the main advantages

of the DMD-based LAODT setups is extremely high frequency of operation (tens of kHz) and

relatively low price. The main disadvantage is low diffraction efficiency of the displayed Lee

holograms which leads to loss of the laser beam power. Also, a standard DMD has a fill factor

of around 90% [63], which has a negative impact on the quality of the displayed hologram and

further deteriorates the parameters of the output beam.
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Figure 2.8: Two illumination scanning scenarios: (a) conical, where the laser beam follows a

circular pattern and (b) spiral, where the laser beam follows a double spiral pattern.

The last method for rotating the illumination beam is utilization of a phase-only reflective

spatial light modulator (SLM) [64]. The main component of this SLM is a high-resolution

liquid crystal on silicon (LCoS) microdisplay. This computer-controlled display can change the

phase of the incoming light. When a blazed phase grating is displayed on the SLM, the light

that is reflected from its surface is diffracted into a single diffraction order. By changing the

parameters of this grating, the angle of the laser beam reflection can be controlled. The SLM

has a relatively low operating frequency (around 60Hz) and a fill factor similar to that of the

DMD. However, in contrast to the DMD, each pixel of the SLM is addressed with a 8-bit signal,

which means that each pixel can display 256 gray levels. This versatility allows to optimize the

parameters of the output beam in terms of diffraction efficiency and the quality of the wavefront.

Additionally, SLM can be used for compensation of some aberrations in the illuminating beam

[64]. However, the high price of the SLM limits its wide application.

Regardless of the method used to rotate the laser beam, the sample has to be illuminated

from different directions and projections have to be captured by the detector. The exact dis-

tribution and number of illumination directions differs depending on the adopted measurement

method. However, two most popular illumination scenarios include conical and spiral illumina-

tion [42, 61, 64, 65], both presented in Fig. 2.8.

2.3.2 Limitation of LAODT

The visualization of FDT, presented in Section 2.2.3, refers to ODT with object rotation config-

uration. In LAODT the object and the detector are stationary, and the illumination is rotating.

This means that in most cases the incident wave will not fall on the detector perpendicular to

its surface, but rather will be inclined. Thus, the Fourier spectrum will be filled in a different

way, as shown in Fig. 2.9. Here, the Fourier transform is again cast onto the arc in the Fourier

spectrum. However, consecutive projections result in shifted, not rotated, arcs being filled with

data. As before, 2D tomography is presented, although this concept can easily be employed for

3D tomography.

27



x

y

t

θ

α

γ

θ

km

us

FOURIER

SPECTRUM

SIGNAL

DOMAIN

ktus

km α

γ

FOURIER

SPECTRUM

(a) (b) (c)

Figure 2.9: Visualization of the FDT for LAODT. (a) Projection acquisition configuration; (b)

corresponding arc in the Fourier spectrum of the object’s scattering potential; (c) example of a

spectrum filled with data from multiple projections (the gray sector represents an empty region

in the spectrum).

Unfortunately, despite indisputable advantages, the principle of operation of LAODT is a

source of its biggest drawback. Due to the fact that the detector is stationary during the mea-

surement process and the illumination is rotating, there is a limited angular range of illumination

directions within which the projections can be acquired. This is caused by the limited numeri-

cal aperture of the microscope objective in the imaging system. When looking at Fig. 2.7 it is

clear that if the illumination angle θ was to be increased, the light would not propagate through

the optical setup to the detector. As a consequence, when all projections are captured by the

LAODT setup and the spectrum of the reconstruction is filled with their Fourier transforms ac-

cording to FDT, still a relatively big area of the spectrum remains empty. As presented in Fig.

2.9(c), in the cone around γ axis, no information about spatial frequencies is provided. Thus, in

LAODT it is not possible to fill the spectrum completely like in ODT (compare Fig. 2.4(c) with

2.9(c)). This inherent property of LAODT results in highly distorted tomographic reconstruc-

tions of analyzed samples when simple reconstruction procedures, like Direct Inversion, are

used. The effect of a partial lack of information in the spectrum on the reconstruction is shown

in Fig. 2.10. By analyzing this image, two main errors can be distinguished in the LAODT

reconstruction:

• the refractive index value in the case of LAODT is, by average, lower than in the case of

ODT;

• the external geometry and the geometry of internal structures is distorted, "blurred" and

thus it is difficult to recognize these structures on the reconstruction.
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Figure 2.10: Visualization of the effect of the empty region in the Fourier domain on the to-

mographic reconstruction of a biological cell, calculated with the Direct Inversion method. The

reconstructions share a common color scale.

Without doubt, LAODT has strong advantages over the standard ODT techniques. However,

the reconstruction errors, that are present when standard ODT reconstruction procedures are

applied to LAODT data, undermine the quantitative nature of the measurements carried out

with LAODT as the correlation between the reconstructed refractive index and the true refractive

index distribution of an analyzed sample becomes loose. Therefore, in order for the LAODT

to become a usable and precise technique for investigation of biological specimens, it is crucial

that dedicated reconstruction methods are developed, which take the empty region in the Fourier

domain into account and iteratively fill it with data based on a priori information.

2.3.3 Reconstruction algorithms in LAODT

As it has been proved in the previous section, LAODT requires dedicated tomographic recon-

struction procedures in order to limit the distortion of the reconstructed refractive index distri-

bution of an investigated sample. In recent years, a few of such techniques have been proposed.

One feature that is common for all of these algorithms is their iterative nature. Unlike the well

known Filtered Backprojection [50] or Direct Inversion [66] algorithms which are single step

methods (which means that after only 1 step the final reconstruction is obtained), the iterative

algorithms require a step which is repeated multiple times: during this process the calculated

reconstruction is converging towards its final form.
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One group of such methods are algebraic algorithms, like Algebraic Reconstruction Tech-

nique [67], Simultaneous Algebraic Reconstruction Technique [68] or Simultaneous Iterative

Reconstruction Technique [69]. Here, the reconstruction process consists of solving a set of

equations where the voxels of a 3D reconstruction are the unknowns. However, these methods

cannot take light diffraction effects into account and so their usefulness in optical tomography

without additional regularization is highly limited.

Another group of methods are those that directly make use of the Fourier Diffraction Theo-

rem [43, 70]. In these methods, the Fourier transforms of captured projections are written into

an empty spectrum of the investigated object’s scattering potential. When the spectrum is filled

with all data, the inverse Fourier transform is calculated. In the signal domain, a constraint

is employed and the first approximation of the refractive index distribution of the investigated

sample is obtained. Next, the Fourier transform of this reconstruction is calculated, and the

Fourier transforms of original projections are again written into this spectrum. Now, however,

the region that has been empty in the first iteration remains filled. This process is repeated mul-

tiple times until the user decides to stop or the algorithm stopping condition has been reached.

The advantage of iterative methods over single step ones is the fact that they can utilize reg-

ularization techniques in each iteration. These techniques consist of introducing mathematical

constraints (additional boundary conditions) to enable calculating a solution of ill-posed inverse

problems. In LAODT, these regularizers make use of a priori information to fill the empty space

in the Fourier spectrum. The type of this information depends solely on the nature of the ana-

lyzed sample. The most basic regularizer is the non-negativity constraint, in which it is assumed

that the phase values of the reconstructed sample cannot be lower than the background values

(e.g. of an immersion liquid). If the analyzed specimen is optically denser than the surrounding

medium, application of this constraint increases the convergence of most iterative algorithms.

Also, it improves the quality of a reconstruction, limiting the distortion that is present due to the

limited angular range of acquired projections, although the improvement is not significant.

Another type of the a priori knowledge that can be employed in the reconstruction process

is the information about the point spread function (PSF) of the tomographic optical system.

Basically, the image of an object formed by a microscope objective is the convolution of every

point of this object with the PSF of the optical system, which carries information about the

"blur" that every point will undergo when imaged, according to Eq. 2.19.

I(x,y) = O(x,y)⊗PSF(x,y) (2.19)

where I(x,y) is the object image and O(x,y) is the object function in the object space (for

the sake of simplicity, imaging system magnification of 1 has been assumed). The PSF can be

used in LAODT algorithms to reverse the above-mentioned blurring which takes place during

image formation process. By deconvolving the image with the PSF, a higher resolution image
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can be obtained - ideally O(x,y) can be retrieved. One problem with this approach is the fact

that it does not limit the LAODT artifacts in the reconstruction that are present due to limited

angular range of projections. Thus, it is usually used together with non-negativity constraint

[42]. Another disadvantage is the difficulty to experimentally determine the PSF of an optical

system. Finally, the quantitative nature of the resulting reconstruction is questionable.

In the last few years, great interest was directed toward tomographic reconstruction methods

which utilize compressed sensing (CS) regularization. CS provides tools to retrieve sparse sig-

nals from incomplete data. The a priori knowledge about the sparse nature of the original signal

is a very strong constraint which allows to retrieve this signal with unprecedented effectiveness.

Thus, if a tomographic reconstruction in LAODT could be represented in a sparse form, by

applying CS techniques one could retrieve the reconstruction without artifacts associated with

limited angular range of acquired projections. Unfortunately, mathematical spaces in which

most biological specimens could be represented in a sparse form are not known. One of the

very few spaces in which a small group of bio-samples is sparse is the gradient of the refractive

index [71]. The CS tool which can be applied to this type of objects is Total p-Variation (TpV)

minimization, which minimizes the TpV norm of a reconstruction. Basically, the TpV norm is

the L1 norm of the gradient magnitude of the three-dimensional reconstruction f [72], as shown

in Eq. 2.20:

‖ f‖TV = ‖(|∇ f |)‖1 (2.20)

Since the reconstruction f is a scalar matrix, its gradient is defined as:

∇ f =~i
∂ f

∂x
+~j

∂ f

∂y
+~k

∂ f

∂ z
(2.21)

where~i,~j,~k are directional vectors. The magnitude of this gradient is defined as:

|∇ f |=

√

(
∂ f

∂x
)2 +(

∂ f

∂y
)2 +(

∂ f

∂ z
)2 (2.22)

Formally, the norm present in Eq. 2.20 should be the L0 norm, which returns a number

of non-zero voxels in the reconstruction. However, minimization of the L0 norm is a NP hard

problem [73] and thus, it is commonly substituted with the L1 or L2 norm which are easier to

minimize.

In tomography, TpV minimization is applied together with algebraic reconstruction meth-

ods, like SART or SIRT [59, 71, 72, 74]. The problem can be stated as follows:

minimize
~f

‖~f‖TV

subject to A~f =~b ~f j ≥ 0

(2.23)
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where ~f is the reconstruction function f represented in the vector form, where elements of

the vector are ~f j with j = 1,2 . . .N, where N is the total number of voxels in the reconstruction;

A is the system matrix which holds information about illumination scenario in the tomographic

setup, number of acquired projections and number of detector pixels; ~b is the sinogram with

measurement data represented in the vector form, where elements of the vector are~b j with j =

1,2 . . .M, where M is the total number of pixels in all acquired projections. Minimization in Eq.

2.23 is constrained with two conditions. The first, A~f =~b, forces the resulting reconstruction

to be consistent with the sinogram. The second, ~f j ≥ 0, is the non-negativity condition which

uses a priori knowledge that phase values in the reconstruction cannot be negative.

Technically, the minimization from Eq. 2.23 can be carried out with various optimization

algorithms. One example is the Chambolle-Pock method [75, 76]. It is an iterative algorithm,

where the optimization problem is reformulated, according to Eq. 2.24.

minimize
~f

{‖A~f −~b‖1 +λ‖(|∇ f |)‖1} (2.24)

where λ is a weighting factor. This algorithm minimizes the sum of two functions: ‖A~f −

~b‖1 which is inconsistency of the reconstruction with the measurement data and ‖(|∇ f |)‖1

which is TpV norm of the reconstruction.

As it has been mentioned earlier, algebraic reconstruction methods cannot take light diffrac-

tion into account. However, when these methods are combined with the TpV regularization,

often high quality reconstructions in LAODT can be obtained [77, 78]. Unfortunately, this ap-

proach assumes that the refractive index distribution of the object under study can be described

with a piecewise-constant function, which often is not true. This is especially problematic

when biological specimens, other than red blood cells (which fulfill this requirement), are in-

vestigated. It is thus dedicated mostly to technical samples, like optical fibers.

2.4 Quality assessment criteria

The methods presented in this Thesis are purely quantitative ones. Thus, in order to objec-

tively assess the efficiency and precision of tomographic reconstructions calculated with these

methods, two quantitative quality assessment methods are used throughout this Thesis.

The first method is calculation of the well-known root-mean-square error (RMSE) between

the reconstructed three-dimensional refractive index distribution and the reference data. RMSE

does not prioritize any regions of the reconstructed volume, treating every voxel equally, ac-

cording to Eq. 2.25.

RMSE =

√

1

n

n

∑
i=1

(yi − ŷi)2 (2.25)
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Because of the mathematical construction of RMSE, it is possible that a reconstruction of a

biological cell will have small error, despite the fact that internal structures of a cell are hardly

visible, just because the surrounding of a cell, which carries no useful information, has been

reconstructed correctly. Thus, the second quality assessment method has been chosen, which

calculates a parameter called ’a universal image quality index’ [79], hereinafter referred to as

the Q parameter. It utilizes structural similarity, which, effectively, prioritizes regions of a

dataset which carry important information. The algorithm processes the analyzed dataset in

a way which mimics human perception. Mathematically, Q-parameter is a product of three

components, as presented in Eq. (2.26).

Q =
σab

σaσb

·
2āb̄

ā2 + b̄2
·

2σaσb

σ2
a +σ2

b

(2.26)

where ā and b̄ are average values of all pixels in images a and b, respectively; σa and σb are

standard deviations of pixel values in images a and b; σab is the covariance between pixel values

in images a and b. According to [79], the three components in Eq. (2.26) are: loss of correlation

between images, luminance distortion and contrast distortion. Q-parameter takes values in the

range [−1,1], where 1 means ideal correspondence between the two compared images.

The above-mentioned assessment methods are used in two cases. The first one is when

numerical simulations are carried out and the calculated tomographic reconstruction can be

compared with the numerical phantom used in the study. The second one is when a known ex-

perimental sample, with calibrated geometry and refractive index distribution is investigated and

its reconstruction can be compared with its known parameters. However, in the Thesis, multiple

experimental samples with unknown geometry and refractive index distribution are analyzed,

like biological cells and tissue slices, where there is no possibility to quantitatively determine

reconstruction errors, since there is no reference reconstruction. In these cases, the correctness

of the calculated reconstruction is extrapolated from the numerical simulations. What is more,

qualitative evaluation of these results by experienced medical doctors is performed. This eval-

uation does not provide information about reconstruction errors. However, it is the first step to

validate the proposed methods in an operational environment.

2.5 Conclusions

Certainly, LAODT is a candidate for the comprehensive method for measuring the 3D refractive

index distribution of biological micro-samples. Combining the LAODT approach with the FDT

and the Rytov approximation creates a firm metrological basis for the retrieval of the scattering

potential associated with the specimen. However, limited angular range of acquired projections,

inherent in LAODT, leads to the empty space in the reconstruction spectrum, which results in
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distorted reconstructions. Without a reconstruction procedure which would minimize this de-

formation and would be dedicated to biological micro-structures, usability of LAODT is highly

limited. Thus, in the next section, a detailed description of such method is presented.
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Chapter 3

Total Variation Iterative Constraint

Method

The problems described in previous sections of the Thesis are the motivation for the develop-

ment of a new tomographic reconstruction procedure. It became apparent that without a pro-

cedure dedicated to analysis of biological samples in LAODT, the assessment of the acquired

tomographic results is very difficult.

In Section 2.3.3, a procedure called TpV minimization has been introduced. It is a pow-

erful regularization method, which, when combined with algebraic reconstruction algorithms,

returns a tomographic reconstruction of the refractive index distribution of an investigated sam-

ple. What is important, this reconstruction is almost entirely free of the distortion that is present

due to limited angular range of acquired projections. Thus, this technique is the main candi-

date for the LAODT reconstruction procedure. Unfortunately, it can be used only with samples

whose refractive index distribution can be approximated with a piecewise-constant function.

This constraint limits its applicability to most technological objects and only a few biological

specimens. When this method is used to reconstruct most of biological micro-structures, cor-

rupted reconstructions are obtained. This is due to the fact that TpV minimization forces the

refractive index distribution of the reconstruction to become piecewise-constant, regardless of

the true nature of this distribution. The effect of application of TpV minimization combined

with ART to tomographic projections of a biological cell phantom with smooth refractive index

distribution in the cytoplasm region is presented in Fig. 3.1. The phantom is formally presented

in Sec. 3.3.1. The projections of the phantom were captured in the limited angular range with

the illumination scanning scenario presented in Fig. 2.8(a). When analyzing the cross-sections

through the calculated reconstruction, shown in Fig. 3.1(b), it is apparent that the smooth struc-

tures in the phantom disappeared. Instead, the piecewise-constant refractive index distribution

has been retrieved, which can be recognized by the presence of patches with constant refractive

35



10um

x

y

z

y y

x

y

z

1.332

1.375

(a) (b)

Figure 3.1: Effect of the TpV minimization procedure combined with the ART algorithm ap-

plied to tomographic projections of a numerical phantom presented in (a). Two cross-sections

through the reconstruction are presented in (b).

index values.

Fig. 3.1 provides 1 additional important information. When the z− y cross-section (z being

the optical axis) through the reconstruction is analyzed, one can notice that unlike the internal

refractive index distribution, the external geometry has been retrieved with decent accuracy.

This is especially clear, when this reconstruction is compared with the one shown in Fig. 2.10.

In both cases, originally there has been an empty region in the spectrum of the reconstruction.

However, when the TpV minimization procedure has been applied, this empty region became

partially filled, which resulted in the correct external geometry reconstruction. To understand

this phenomenon, one can notice that a biological cell covers usually only a small part of the

measurement volume. Thus, in the extreme case, when TpV procedure is applied, the cell as

a whole is approximated as one big 3D patch with a constant refractive index value (being the

average value of the refractive index distribution of the whole specimen). This approximation

is used in the TpV minimization procedure and this is the reason, why the external geometry is

correctly retrieved. This phenomenon led to development of a novel reconstruction approach,

which I called the Total Variation Iterative Constraint (TVIC) method and which can be ap-

plied to specimens with non-piecewise-constant refractive index distribution [64, 77, 80]. This

method is the main novelty of my Thesis. In this section, the detailed description of this

procedure is provided.

Disclaimer: In order to standardize nomenclature, in the Thesis I abbreviated the name of

the tomographic reconstruction strategy from Generalized Total Variation Iterative Constraint

(GTVIC - which is how the method is called in some research papers) to Total Variation Iterative

Constraint (TVIC).
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Figure 3.2: TVIC strategy scheme

3.1 General description

The idea behind the TVIC approach is to divide the process of tomographic reconstruction of

non-piecewise-constant samples into 2 parts. In the first one, the external geometry (informa-

tion about investigated object’s boundaries), free from the deformation characteristic to LAODT

reconstructions, is retrieved. Here, it is assumed that the sample under study is distinguishable

from the surrounding medium in terms of the refractive index. This part is carried out according

to the TpV minimization procedure described in detail in Section 2.3.3. As a result, a 3D recon-

struction of the measured biological micro-sample is obtained, which defines the spatial limits

of the specimen - it has, however, erroneous refractive index distribution of internal structures.

That is why, it is binarized and a 3D mask is created. In the second part, the refractive index

distribution of internal structures is reconstructed with an iterative tomographic solver. Fig-

ure 3.2 presents the flow diagram of the TVIC strategy. The M1 module, presented in the figure,

is constant for all tomography data types. The tomographic solver from M2 module, however,

depends on whether the diffraction effects can be neglected (like e.g. in x-ray tomography or

optical tomography of extremely thin objects with the detection plane optically coupled with the

center of the sample) or not. In the M2 module, no piecewise-constancy of the refractive index is

assumed - it is thus perfectly suited for the analysis of non-piecewise-constant specimens. This

part is, however, strongly supported with the mask, adaptively optimized during the first stage.

This 3D mask is applied in every iteration of the tomographic solver, becoming a support con-

straint. This allows the algorithm to reconstruct the refractive index distribution of an analyzed

sample with the minimized distortion associated with the LAODT. What is more, it enhances

the convergence rate of the utilized algorithm. In general, the TVIC procedure is a universal

one and can easily be adopted for different tomography setups. It is however, dedicated mainly

to the reconstruction of the 3D refractive index distribution of non-piecewise-constant samples.

The second stage is an arbitrary iterative reconstruction procedure. In this Thesis, a Gerchberg-

Papoulis (GP) algorithm is used [81]. It is an iterative version of the reconstruction procedure

based on FDT, which was described in Section 2.3.3. The core of this algorithm is the iterative
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Figure 3.3: Dependence of the reconstruction scheme on investigated object type; TpV - total

p-variation algorithm, GP - Gerchberg-Papoulis algorithm. [83]

filling of the reconstruction spectrum with the appropriately prepared Fourier transforms of the

acquired projections. These Fourier transforms are cast onto the Ewald’s spheres, as shown in

Fig. 2.9. What is more, the Rytov approximation has been utilized, as it is coherent with the

nature of biological specimens. In each iteration of this algorithm, the mask from the first stage

is applied onto the reconstruction. Contrary to the first stage of the method, the number of itera-

tions of this stage is not fixed. The criteria specifying this number are discussed in Section 3.3.1.

In the Thesis, the GP algorithm supported with the TVIC strategy will be called TVIC-GP.

It should be noted that the idea behind the TVIC strategy (utilization of a binary mask

to support the process of the tomographic reconstruction) is coherent with recent advances in

Computed Tomography which uses x-ray radiation for the investigation of samples which are

characterized by the piecewise-constant absorption coefficient [82]. In Computed Tomography,

however, the diffraction of radiation is ignored and the angular span of projections equals 360◦,

thus no artifacts associated with a limited angular range of projections are present.

To conclude, depending on the nature of the investigated sample, different reconstruction

approach has to be adopted when LAODT is used. If the sample is characterized with the

refractive index distribution that can be approximated with a piecewise-constant function, the

TpV algorithm may be sufficient to retrieve the distortion-free refractive index distribution. If,

however, the sample has a non-piecewise-constant nature, like most biological specimens have,

the TVIC procedure should be applied. This has been visualized in Fig. 3.3.
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3.2 Reconstruction clearing procedures

One common problem present in most tomographic reconstruction approaches is the presence

of unwanted objects in the measurement volume, like dust particles, cellular debris, air bubbles

and others. Usually, these inclusions are reconstructed together with the analyzed sample. The

presence of these inclusions may result in the partially obscured reconstructed image, which

may cause difficulties during e.g. assessment of the parameters of a reconstructed biological

cell.

One of the advantages of the TVIC method is the straightforward possibility to introduce

procedures for removing the unwanted objects from the reconstructed results. Here, two differ-

ent methods for removing these structures are presented. In both cases the TVIC procedure is

carried out in the same standard way until the piecewise-constant version of the reconstruction

is calculated with the TpV minimization method and the 3D mask based on this reconstruction

is created. This mask carries information about the distortion-free geometry of the analyzed

sample and of the unwanted objects in the measurement volume.

In the first reconstruction clearing procedure, the calculated mask undergoes segmentation.

As a result, all objects (both the investigated one and the unwanted inclusions) are identified

as separate structures. Thus, now it is a straightforward procedure to remove the information

about all structures but the largest one from the mask (it should be emphasized that it is assumed

that the sample under study is larger than the inclusions). This modified mask is saved under a

different name in the computer memory. Then, the process of the tomographic reconstruction is

conducted in a standard way with the iterative solver of choice. In each iteration, the unmodified

version of the mask is applied to the reconstruction. However, when the last iteration is finished,

the 3D reconstruction is masked with the modified version of the mask. This way, only the

investigated sample is left in the 3D reconstruction. The procedure is presented in Fig. 3.4(a).

The second approach is a more complex one: it removes unwanted objects from the recon-

struction by clearing the original sinogram. In the first step, the 3D mask calculated with the

TpV method is segmented. Then, the investigated object is removed from this reconstruction.

This way, only the unwanted structures are left. In the next step, a phase sinogram, based on this

reconstruction, is recalculated. This sinogram calculation step mimics the experimental process

of acquiring projections of the investigated measurement volume. As a result, the sinogram of

the unwanted inclusions is obtained. Finally, this sinogram is subtracted from the original phase

sinogram, resulting in a inclusion-free phase sinogram of the analyzed specimen.

There are two remarks that should be made. Firstly, for simplicity, the sinogram recal-

culation process is performed with the straight line approximation (the inverse of the Filtered

Backprojection algorithm), which means that no diffraction is taken into account. Secondly,

the amplitude sinogram remains intact, which leads to inconsistency between the phase and
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amplitude sinograms. Still, however, the procedure assures that the phase associated with the

unwanted inclusions is removed from the original data. This modified sinogram is then passed

to the tomographic reconstruction algorithm. This procedure is presented in Fig. 3.4(b).

The advantage of the second approach is the fact that it can be applied to every tomographic

reconstruction algorithm as it is independent from the reconstruction content. Thus, when this

sinogram clearing procedure is done, the modified sinogram can be saved and passed to any

reconstruction technique. Furthermore, it is important to note that when unwanted structures in

the reconstruction do not have sharp edges (have blurry structure) it is not possible to correctly

perform their segmentation with the first clearing method. As a consequence, when this proce-

dure is used these inclusions are not completely removed. However, in the second method the

only structure that is segmented in the clearing process is the investigated object. Whatever is

left in the TpV reconstruction after this object is removed will not be present in the final result.

Unquestionably, this is a crucial advantage of the second clearing strategy.

There is another reason why the second approach should be used when high accuracy TVIC-

GP reconstructions are calculated. In each iteration of TVIC-GP the mask with retrieved ge-

ometry of an object is applied in the reconstruction domain. This means that all inclusions are

removed from the reconstruction in each iteration (since the mask covers only the investigated

sample). At the same time, however, in each iteration these inclusions are again introduced to

the reconstruction by replenishing a part of the spectrum with Fourier transforms of original

projections where these structures are still present. As an effect, the refractive index values

associated with unwanted structures are pushed inside the investigated object, which introduces

reconstruction errors. Thus, in order to achieve high quality results, the second clearing strategy,

which removes information about the inclusions from the original sinogram, has to be utilized.

However, this approach, compared to the first one, is more time-consuming as it requires ad-

ditional TpV minimization and sinogram recalculation procedures. In this Thesis, the second

approach is used.

The numerical verification of both clearing methods is carried out in Section 3.3.5.

3.3 Numerical experiments & quality assessment

In this section, the TVIC-GP procedure is numerically tested. The purpose of these tests is to

assess the errors that are present in the reconstructions and that are associated with the principle

of operation of TVIC. Also, this section aims to assess the degree to which the reconstruction

distortions, that are present due to limited angular range of acquired projections, are minimized.

All the test conducted in this section are carried out on numerical phantoms.

First, the numerical phantoms used in the study are presented. The second part of this

Section is dedicated to analysis of convergence of the TVIC-GP approach. Then, dependence of
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Figure 3.4: Processing schemes for two reconstruction clearing procedures: (a) method of re-

moving structures from the final reconstruction with the modified mask and (b) method of clear-

ing the input sinogram.
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the TVIC-GP method on the number of acquired projections is analyzed. Finally, the efficiency

of the reconstruction clearing procedures, described in the previous section, is evaluated.

3.3.1 Method

First, the parameters of the TVIC-GP approach have to be specified. The sufficient number

of 100 TpV iterations has been determined experimentally as the number that guarantees re-

trieval of 3D geometry of an investigated biological specimen. Higher number of iterations

increases the computational load of the algorithm and does not bring significant improvement

(the difference between next consecutive reconstructions is small). At the end of this step, this

reconstruction is binarized with a threshold level equal to 0.7h, where h is the threshold level

calculated automatically with Otsu’s method [84], resulting in a 3D mask with the retrieved true

geometry of the investigated sample. This step is implemented in Matlab environment with the

use of ASTRA Tomography Toolbox [85, 86]. The mask is then passed to the second stage

(GP algorithm) of the algorithm as a support constraint, where properly reconstructed object

boundaries will be filled with correct refractive index values.

For the analysis of the TVIC-GP accuracy and effectiveness, three-dimensional phantom

objects have been modeled.

The first numerical phantom is a sphere with the constant refractive index value nHeNe =

1.4905 surrounded by the immersion liquid with refractive index value nHeNe = 1.5173. Diam-

eter of the sphere equals 10µm. The size of the matrix with the phantom is 500× 500× 500

pixels, with the simulated pixel size of 0.24µm. This phantom represents piecewise-constant

objects. Despite the fact that the procedures developed in this Thesis are dedicated to bio-

logical micro-samples with non-piecewise-constant refractive index distribution, the piecewise-

constant sphere is still the perfect testing object, as all the reconstruction artifacts are well

noticeable.

Since the TVIC-GP procedure is designed for the reconstruction of biological micro-objects,

the second phantom structure was based on the real biological cell. The phantom is presented

in Fig. 3.5. This simplified phantom is based on the structure of a Paramecium cell.

The phantom consists of:

• immersion medium surrounding the cell, with constant refractive index value equal to

nHeNe = 1.3317,

• cytoplasm with refractive index value varying in the range nHeNe = 1.359−1.369,

• a cell core with refractive index value varying in the range nHeNe = 1.37−1.375,

• a vacuole with constant refractive index equal to nHeNe = 1.3317,
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Figure 3.5: Numerical phantom of a biological cell: (a) 3D geometry with a partial cross-section

and (b) full cross-section through the center of the phantom.

• a cell wall with a refractive index that smoothly transits from the refractive index of the

cytoplasm to the refractive index of the immersion medium.

Since this object should not be piecewise constant, the cytoplasm and nucleus of the phan-

tom were designed to contain smoothly varying, quasi-random refractive index distribution.

These structures were designed as a scaled Fourier transform of a zero-padded matrix with pix-

els with random values. The size of the matrix with the phantom is 500×500×500 pixels, with

the simulated pixel size of 0.24µm. The size of the phantom itself is approx. 267×125×107

pixels.

To carry out the simulations, the projections of the phantom objects described above are

calculated by conducting the reverse process of FDT: the Fourier transform of the scattering

potential of the phantom is calculated and the data lying on the Ewald’s sphere is extracted and

inverse-Fourier-transformed. By choosing specific Ewald’s spheres, different phantom projec-

tions can be generated. The orientation of the phantoms with respect to the optical system in

this simulation is presented in Fig. 3.6. In should be noted that projections calculated in this

way do not take higher order scattering into account which may result in overvalued quality

of obtained reconstructions. Still, however, this does not interfere with the possibility of fair

assessment of LAODT artifacts.

In the process of generating numerical projections, the LAODT system with the given pa-

rameters has been simulated:

• camera pixel size: 3.45µm×3.45µm

• wavelength: 0.633µm

• imaging system magnification: 30

• numerical aperture of the microscope objective: 1.3
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Figure 3.6: Numerical projection acquisition scenario and orientation of the phantom objects

with respect to the optical system in the case of a (a) sphere, (b) biological cell.

• illumination scenario: conical (see Fig. 2.8) with θ = 46.5◦

• number of captured projections: 180

The appearance of an example of phase and amplitude projections of both phantoms is

shown in Fig. 3.7.

3.3.2 Proof of concept

In this section, the advantage of the tomographic reconstruction algorithm (GP) supported with

the TVIC approach over a reference tomographic algorithm (GP only), in terms of the recon-

struction quality, is presented.

To prove the efficiency of the TVIC-GP method, the micro-sphere phantom is reconstructed.

The projections are created according to the sinogram generation procedure described in the

previous section. Both GP and TVIC-GP approaches are stopped automatically when the

changes in the reconstruction, introduced by next iterations, are sufficiently small. Figure

3.8(c,d) presents the x−z and x−y cross-sections through the center of the reconstruction calcu-

lated with the GP method. Analogous results for the TVIC-GP procedure are presented in Fig.

3.8(e,f). In Fig. 3.8(a,b), the reference cross-sections are presented. The x− y cross-sections in

both cases look similar. However, when TVIC-GP is used, a significant improvement in the x−z

cross-section is visible. Firstly, the boundaries of the sphere are correctly reconstructed and the

elongation of the reconstruction in the z direction is no more present. What is more, the refrac-

tive index distribution inside the sphere is retrieved with increased accuracy. The reconstruction

improvement is better visible in Fig. 3.9, where the 1D z-cross-sections through the x− z re-

sults presented in Fig. 3.8 are shown. The gray color in the plot is the central 1D z-cross-section

through the reference phantom data. The red and blue lines represent the reconstructions calcu-

lated with GP and TVIC-GP, respectively. It can be easily noticed that the TVIC-GP procedure
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Figure 3.8: Two-dimensional cross-sections through the phantom object and two reconstruc-

tions calculated with the GP and TVIC-GP procedures. RI - refractive index.

retrieves the object boundaries and the inner refractive index distribution with higher accuracy.

This property is associated exclusively with the utilization of the 3D mask with the retrieved

precise information about geometry of the analyzed sample. Basically, the cross-section shown

in Fig. 3.9 is always the worst-quality cross-section in the whole reconstruction volume as it

covers the distortion of the result in the z direction. Therefore, here the reconstruction errors

have the highest values. When the TVIC-GP method is used, the error of refractive index in

this cross-section, understood as the maximum difference between the TVIC-GP reconstruction

and reference data, is smaller than 0.001. Thus, with regard to simulations, the metrological

requirement stated in the "Aim of the Thesis" is fulfilled for this object.

To confirm the above observations, global quality values were calculated: when the GP

algorithm has been used, the RMSE calculated for the whole measurement volume equals

9.46×10−5, and the Q parameter equals 99.08% for the x− z and 99.93% for the x− y cross-

sections, respectively. When the TVIC-GP method is applied, the RMSE equals 5.78× 10−5,

and the Q parameter equals 99.69% and 99.54% for the x− z and x− y cross-sections. Espe-

cially the RMSE values show a significant improvement in the reconstruction quality. What

is more, the TVIC-GP reconstruction has been calculated in 10 iterations in comparison to 21

iterations that were necessary in the GP case.

To further visualize the effectiveness of the TVIC-GP algorithm, the above analysis is re-

peated for the biological cell phantom. All the sinogram generation and reconstruction param-
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Figure 3.9: One-dimensional cross-sections in the z direction through the two-dimensional x−z

cross-sections presented in Fig. 3.8.

eters remain unchanged. The GP and TVIC-GP algorithms are stopped automatically. The

cross-sections through the phantom data and the reconstructions calculated with GP and TVIC-

GP are shown in Fig. 3.10. The advantage of the TVIC-GP procedure over the GP is clear.

The boundaries are retrieved perfectly. What is more, the improvement of the refractive index

distribution in x− z and x−y cross-sections is evident. Again, these observations are supported

with the 1D z-cross-sections shown in Fig. 3.11. Close inspection of this cross-section reveals

that in most part the error is smaller than 0.05. The only place, where it takes higher values is

the central part, where the vacuole is present. Similarly to the case of the micro-sphere, this is

associated with steep edges.

As before, the global quality values confirm the enhanced reconstruction quality. For the

GP case, the RMSE calculated for the whole measurement volume equals 7.33× 10−4, and

the Q parameter equals 99.05% for the x− z and 99.48% for the x− y cross-sections. For the

TVIC-GP case, the RMSE equals 3.43×10−4, and the Q parameter equals 99.21% and 99.28%

for the x− z and x−y cross-sections. Again, these values show quality improvement, especially

in the x− z cross-section. Also, the TVIC-GP method stopped after 13 iterations, whereas the

GP algorithm required 23 iterations.

3.3.3 Convergence analysis

Investigation of the algorithm convergence is one of the most important analyses that char-

acterizes the efficiency of any iterative tomographic reconstruction method. In short, as the

iterations progress, the tomographic reconstruction calculated with a tomographic reconstruc-

tion algorithm should approach towards the true refractive index distribution of an investigated

sample. Often, it is possible to carry out a mathematical proof of the convergence of a given
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Figure 3.10: Two-dimensional cross-sections through the biological phantom object and two

reconstructions calculated with the GP and TVIC-GP algorithms. RI - refractive index.
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Figure 3.11: One-dimensional cross-sections in the z direction through the two-dimensional

x− z cross-sections presented in Fig. 3.10.
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method. This assures the effectiveness of the algorithm.

Basically, tomographic algorithms have different convergence properties. In one group of

methods, the quality of the reconstruction will increase together with the iterations up to a point,

where no more improvement is visible and the solution stagnates. In the other group, instead

of stagnating, the quality of the reconstruction decreases after a certain critical number of iter-

ations is reached. When numerical simulations are carried out, it is relatively simple to specify

the stopping criterion for both groups of algorithms. What is necessary, is calculation of the

quality of a reconstruction after every iteration. This quality is specified by comparing the cur-

rent reconstruction with the phantom data. Then, the quality of the current reconstruction is

compared with the quality of reconstructions in previous iterations, and based on that compar-

ison, the stopping criterion is set. In the first group of algorithms, when the quality difference

between two consecutive iterations drops below a certain value, the algorithm is stopped and

next iterations are not calculated. In the second group, the stopping occurs when the quality

starts to decrease [49].

In this section, the convergence property of the TVIC-GP approach is investigated. Since

the TVIC-GP method is not an analytical one, it is not possible to mathematically determine the

convergence. It is, however, possible to conduct a simulation which will experimentally show

how the quality of the calculated tomographic reconstruction changes as the algorithm iterations

progress.

The analysis has been carried out with the biological cell phantom. 180 object projec-

tions have been acquired according to the procedure described in the previous section. First, a

mask with the 3D geometry of the phantom has been retrieved by running the 1st stage of the

TVIC-GP procedure. The mask is then passed to the second stage, the GP algorithm. For this

experiment (and this experiment only), 100 GP iterations were run. The quality of the recon-

struction calculated in each iteration of the GP algorithm supported with the TVIC strategy is

presented in Fig. 3.12. The figure presents the RMSE (calculated for the whole reconstruction

volume) and Q values (calculated for the central x− z cross-section of the reconstruction) of

the biological cell reconstruction. From the shape of the curves, it is clear that after a certain

number of iterations is reach, the reconstructions become worse. In this specific case, this point

is reached after 15 iterations for the Q parameter and 14 iterations for the RMSE. Therefore, it

is important to stop the algorithm when this point (for Q or RMSE) is reached.

The analysis presented above proves how important it is to stop the TVIC-GP when the

maximum of the Q-curve, or minimum of the RMSE-curve occurs. However, in real-life mea-

surements, where biological micro-structures are investigated, there is no possibility to gener-

ate any of these curves, as there is no reference phantom with which the reconstructions can

be compared. There are two solutions to this problem. The first involves performing a set of

numerical simulations to experimentally find the optimal number of iterations for a given class
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Figure 3.12: TVIC-GP convergence analysis presented as the dependency of RMSE and Q-

parameter on the number of algorithm iterations in the case of noise-free projections.

of analyzed samples and use these values in physical measurements. In this approach, a table

with the number of iterations associated with a given type of an analyzed object is created, e.g.

10 iterations for 10µm size biological cells in suspension, 20 iterations for histological tissue

slices without staining etc. In the second approach, no look-up table is created. Instead, the

differences between consecutive reconstructions (instead of the quality measures for these re-

constructions) are calculated. Then, when the difference between two reconstructions is smaller

then a threshold value, the algorithm stops. The justification for this method can be understood

when one analyzed Fig. 3.12 again. Regardless of which curve is analyzed, it is clear that after

approximately 10 iterations, the differences between next consecutive reconstructions are very

small. The TVIC-GP method described in this Thesis utilizes the second approach.

To better understand the behavior of the TVIC-GP method, the convergence analysis in the

case of noisy data is conducted. For this experiment, the sinogram of a biological cell phantom

is used again. This time, however, noise is added to each phase and amplitude projection. In

real-life experiments, the main source of the noise in projections is the electronic noise of the

detector which captures the holograms. However, without tests it is difficult to determine how

the noise from the hologram is transmitted into phase and amplitude of a projection, and thus it

is not possible to create noisy phase and amplitude sinograms which would be a realistic input

to the TVIC-GP method. To conduct the analysis in this section in a reliable way, a synthetic

off-axis hologram, which mimics a real hologram captured in the LAODT setup, is created.

This hologram is presented in Fig. 3.13(a). It simulates the case, where two spherical objects

are in the measurement volume of the LAODT setup. The two objects are at different depths,

however, one of them is currently in focus. In the next step, a random Gaussian noise is added

to the hologram (see Fig. 3.13(b)). The resulting signal-to-noise ratio (SNR) equals 6dB.
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Figure 3.13: Synthetic hologram (a) without and (b) with Gaussian noise.

Next, both the noise-free and noisy holograms are processed with the Fourier transform

method of phase and amplitude retrieval [20]. When the holograms are demodulated, the SNRs

in the amplitude and phase distributions associated with the noisy hologram are calculated by

comparing them with the corresponding noise-free distributions. This provides information on

how the noise in the hologram is transmitted to the retrieved phase and amplitude. The SNR in

the amplitude distribution equals 8.8dB and in the phase distribution 18dB.

This simple test allows me to generate phase and amplitude sinograms of a biological cell

phantom with appropriate noise levels and without the inaccuracy introduced by the hologram

demodulation procedure. These noisy sinograms are created by imposing the SNR from the

example demodulated hologram presented above. This way, an evaluation of the convergence

of the TVIC-GP method in real-life conditions can be conducted. The random Gaussian noise

is added to the amplitude sinogram in such a way that the SNR for each projection equals

8.8dB. The noise with a different variance is added to the phase projections to achieve SNR

equal to 18dB. It should be noted that this procedure is only an approximated way of generating

noise and does not follow the physical process of noise creation fully. Because each phase

projection in the phase sinogram has a slightly different variance, and due to the fact that when

the Gaussian noise is added to each projection, a constant SNR is enforced, the variance of

the noise in each projection also differs, which should not be the case (the same is true for

the amplitude projections). Still, however, the projections generated in this simplified way

may provide important information about the effectiveness of the TVIC-GP procedure when

holograms with SNR equal to 6dB are captured, as these projections are now used to reconstruct

the refractive index distribution and to evaluate the convergence.

The resulting quality plot is presented in Fig. 3.14. The curves presented in this figure show

that when TVIC-GP is used to process data from holograms with SNR equal to 6dB, the nature

of the convergence does not change. After a number of iterations, the Q-curve and RMSE-curve
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Figure 3.14: TVIC-GP convergence analysis presented as the dependency of RMSE and Q-

parameter on the number of algorithm iterations in the case of noisy projections.

reach maximum and minimum, respectively. However, the maximum value reached by the Q

parameter is lower when compared to the noise-free case (99.0% vs 99.3%) and the minimum

value of RMSE is higher (10.3× 10−4 vs 3.4× 10−4), which is expected. This experiment

proves that the TVIC-GP procedure is predictable in real-life scenarios.

3.3.4 Dependence of the reconstruction quality on the number of

projections

In ODT, and LAODT in particular, it is crucial to understand how the number of acquired pro-

jections influences the quality of the calculated reconstruction. If the number of projections can

be reduced without significant loss of the reconstruction accuracy, both the data acquisition and

reconstruction time can be highly limited. This, in turn, leads to the possibility of investigating

dynamic processes that are taking place in biological specimens. At the same time, this relation

is one of the most important ways of evaluating the efficiency of the reconstruction algorithm.

Thus, in this section, an analysis showing the dependence of the TVIC-GP reconstruction on

the number of input projections is carried out.

The analysis is conducted with the biological cell phantom. 180 noise-free projections were

first generated according to the procedure described in Section 3.3.1. First, a sinogram con-

sisting of all available projections has been used to calculate the tomographic reconstruction.

As was described in Section 3.1, 100 iterations of the TpV procedure were calculated to gener-

ate the object mask, which is passed to the second stage of the TVIC-GP method. In the next

step, GP iterations were calculated with the automatic stopping criterion described in previous

section. Then, the quality of the obtained reconstruction is calculated by comparing the recon-
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struction with the utilized cell phantom. The Q parameter is calculated for central x−y and x−z

cross-sections through the reconstruction and the RMSE is calculated for the whole reconstruc-

tion volume. When the quality parameters are saved, the procedure is repeated for a reduced

number of projections in the sinogram. In this study, the following set of projection numbers

has been analyzed: 180, 165, 150, 135, 120, 105, 90, 75, 60, 45, 30, 25, 20, 15, 10, 5. Selected

reconstructions are presented in Fig. 3.15. The quality plots are shown in Fig. 3.16. This plot

shows that the quality of the calculated reconstruction changes only slightly when the number

of projections used is greater or equal to 90. This conclusion is supported both by the RMSE

and Q-parameter curves. When the number of projections is further reduced, the accuracy of

the retrieved refractive index distribution decreases significantly.

The above experiment has been repeated for the GP algorithm and the quality plots are

shown in Fig. 3.15 with dotted lines. Inspection of this plot reveals that GP algorithm gives

significantly worse results when it is not supported with the TVIC strategy. This relation is true

for all numbers of projections analyzed in this experiment except for the case with 5 projections

where the value of the Q parameter is higher for GP than for TVIC-GP. This analysis is another

confirmation of the effectiveness of the TVIC-GP procedure.

The analysis carried out in this section proves that when the TVIC-GP procedure is used,

the number of acquired projections can be strongly reduced. This is a very important conclusion

as it means that the projections acquisition time can be limited, which, in turn, allows LAODT

to investigate dynamic processes that take place in live biological samples.

3.3.5 Analysis of the reconstruction clearing efficiency

In this section, the efficiency of the reconstruction clearing procedures, described in detail in

Section 3.2, is carried out. The objective of these methods is to remove all objects from the

reconstruction volume but the greatest one.

For this experiment, the biological cell phantom is used. Additional 6 spherical inclusions

are added to the phantom volume. Each inclusion has a diameter of 50 pixels (or 12µm with

the simulated pixel size of 0.24µm) and a constant refractive index value of 1.42. These inclu-

sions symbolize unwanted objects that are often present in the measurement volume, like dust

particles or cellular debris. The distribution of these objects is presented in Fig. 3.17.

First, the procedure where the modified version of the mask (describing only the investigated

object) is applied to the final tomographic reconstruction is analyzed. The numerical sinogram

of the biological cell phantom with inclusions has been reconstructed with the TVIC-GP ap-

proach. The standard version of the mask has been applied in every iteration of the algorithm.

When the tomographic reconstruction has been calculated, the modified version of the mask,

with only the investigated object left, has been used. In Fig. 3.18 the effect of utilizing this

procedure is shown. In Fig. 3.18(a) and (b), the standard and modified version of the mask is
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Figure 3.15: Selected x− y and x− z cross-sections through the reconstructions calculated with

TVIC-GP for different number of input projections. The number in the corner is the number of

projections. All reconstructions share the same color bar. RI - refractive index.
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Figure 3.16: TVIC-GP and GP reconstruction quality as a function of number of projections.
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Figure 3.17: Visualization of the biological cell phantom with 6 spherical inclusions.

presented. In Fig. 3.18(c), the x−y and x−z cross-sections through the final cleared reconstruc-

tion is shown. The Q parameter calculated for this reconstruction is equal: Qxy = 98.47% and

Qxz = 98.93% for the central x− z and x−y cross-sections, respectively. The RMSE calculated

for the whole 3D reconstruction equals 6.52×10−4.

The second, more advanced, procedure for clearing the reconstruction, which involves clear-

ing the input phase sinogram is now evaluated. The same numerical phantom is used as in

the previous experiment. The effect of applying this procedure is presented in Fig. 3.19. In

Fig. 3.19(a) phase distribution of one of the numerical tomographic projections is shown.

In Fig. 3.19(b), the same projection after applying the sinogram clearing algorithm is pre-

sented. Residual phase of the inclusions is still visible, however, most of their phase has

been removed. The final tomographic reconstruction calculated with the TVIC-GP strategy

supported by this sinogram preprocessing approach is shown in Fig. 3.19(c). The presented

cross-sections look similar to the ones presented in Fig. 3.18(c), however, the quality is higher:

Qxz = 99.14% and Qxy = 99.07% for the central x− z and x− y cross-sections, respectively,

and RMSE=5.41×10−4.

Conducted experiments prove that the second approach of clearing the reconstruction gives

results with higher quality. However, as it was mentioned, it is also more computationally

demanding.
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Figure 3.18: Visualization of the effect of applying the reconstruction clearing procedure for

removing unwanted objects from the reconstruction: (a) x−y cross-section through the standard

mask; (b) the same cross-section through the modified mask with removed unwanted objects;

(c) x− y and x− z cross-sections through the final reconstruction. RI - refractive index.
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Figure 3.19: Visualization of the effect of applying the sinogram clearing procedure for re-

moving unwanted objects from the reconstruction: (a) phase distribution of 1 of the numerical

projections of the biological cell phantom - unwanted objects visible; (b) the same projection

with removed unwanted objects; (c) cross-sections through the final reconstruction. RI - refrac-

tive index.
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3.4 Conclusions

In this section, the TVIC-GP approach has been thoroughly tested. The analyses that were

carried out show that this approach is a comprehensive method for precise reconstruction of the

3D refractive index distribution of non-piecewise-constant biological micro-samples.

The most important conclusion from this section is the fact that this approach effectively

limits the distortion of a 3D reconstruction that is usually present due to limited angular range of

acquired projections of a measured phantom with biological characteristics. Both the geometry

and the inner refractive index distribution is significantly corrected. These simulations give

grounds to confirm the research hypothesis stated in this Thesis. However, the experimental

verification is still necessary, and is presented further in the Thesis.

It has been shown that the algorithm converges to the solution even when the investigated

object’s projections are noisy, which is an important conclusion. What is more, the tests proved

that the number of input projections can be significantly limited. Also, a reconstruction clearing

procedure has been proposed which be a significant help when the evaluation of the results is to

be performed by medical doctors and biologists.

All these analyses lead to the conclusion that TVIC-GP approach is, according to my knowl-

edge, the first effective tomographic reconstruction procedure dedicated to measurement of bi-

ological samples in LAODT.

However, this method does not correct all errors that are present in the reconstruction. In

particular, certain errors in retrieval of the refractive index may be observed in parts of a recon-

struction that are distant from the central x−y plane: see Fig. 3.10(e) where the refractive index

erroneously decreases near the horizontal boundaries of the biological cell phantom. Thus, in

the next section a solution to this problem is proposed and tested.
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Chapter 4

Extended depth-of-field LAODT

As it has been mentioned in the previous Chapter, one of the drawbacks of LAODT that is not

solved by the TVIC strategy is the non-isotropic resolution of the tomographic reconstruction.

In fact, the resolution is maximum in the region of the reconstruction that is within the depth of

field (DOF) of a utilized microscope objective and decreases with the distance from this region.

This phenomenon makes it difficult to identify all the inner structures of an analyzed sample.

This is especially problematic, when the sample is thick and some inner structures are found

near the object boundary. In this section, the detailed description of the origin of this problem

together with a solution is described.

4.1 Problem description

The basic step in LAODT is acquisition of a single projection. As a result, a hologram with

encoded information about the integrated complex refractive index distribution along the illu-

mination direction is recorded by a detector. A microscope objective in the optical setup conju-

gates a central z-plane (where z is the optical axis) of the measurement volume with a detector,

and thus the part of the integrated complex refractive index that comes from the surrounding

of this z-plane is diffraction-free since it is within the DOF of the optical setup. DOF highly

depends on the NA of the optical setup, according to the relation:

DOF ∝
λn

NA2
(4.1)

where λ - wavelength in vacuum, n - immersion refractive index, NA - numerical aperture.

So, it is clear that with high NA microscope objectives, utilized in LAODT setups, DOF is

extremely shallow. This is important, because the effect of non-central planes (z-planes that are

outside of DOF) on the integrated complex refractive index is nonlinear. When analyzing the

influence of these z-planes, it is necessary to take diffraction into account. What is more, the

58



further the z-plane is from the center of a measurement volume, the more significant the effect

of diffraction is.

The two well-known methods that linearize the relationship between refractive index distri-

bution of z-planes that are outside of the optical system DOF with the recorded projection are

1st order Born and Rytov approximations, described in Sec. 2.2.2. It has already been proven

that when biological micro-structures are measured, 1st order Rytov approximation provides

superior results.

The property of spatially-variant resolution is inherent to the Rytov approximation that is

utilized during the numerical reconstruction procedure. However, there is a lot of confusion in

research papers regarding this subject. In particular, many sources claim that the Rytov approx-

imation has spatially invariant accuracy. In [43], one can read “This condition basically asserts

that the Rytov approximation is independent of the specimen size and only limited by the phase

gradient (. . . )”. Also, in [53] it reads “(. . . ) the size of the scatterer is not a factor in determining

the accuracy of the Rytov approximation”. It can be argued that these statements are not precise

and may lead to incorrect conclusions. While it is true that the validity condition for the Rytov

approximation is associated only with the phase gradient (unlike Born approximation), it is not

equivalent to the fact that a 3D reconstruction calculated with the Rytov approximation will

have a uniform resolution in the whole measurement volume. This is just the condition for the

type of an object that can be reconstructed with this approximation. Let us recall the Helmholtz

equation in the complex phase form from Section 2.2.2:

(∇2 + k2
0)u0(~r)Ψ(~r) =−[(∇Ψ(~r))2 + f (~r)]u0(~r) (4.2)

The Rytov approximation is carried out by removing the component with the gradient of the

complex phase from this wave equation. This operation can be successfully performed when

this gradient is small (only then the approximation holds). Consequently, the gradient of the

complex phase is small when the gradient of the refractive index distribution in the measurement

volume is small. Note that if the gradient of the object’s refractive index distribution is small,

the gradient of the Rytov field emitted by a chosen object plane will be small regardless of the

thickness of the object, and in this sense the Rytov approximation does not depend on the object

size. This can be compared with the Born approximation which depends on the total energy of

the scattered field. The above equation is, however, used to propagate the complex field and

to calculate the tomographic reconstruction. Since this is not a rigorous propagation algorithm,

it introduces errors, and these errors increase with the propagation distance from the plane in

focus of the optical setup. As a result, the resolution of the reconstruction decreases with the

distance from the center of the measurement volume (in the case of ODT with object rotation)

or from the focal plane in the object space (in the case of LAODT). It is important to understand

that despite the fact that in the TVIC-GP method no propagation is directly calculated, filling the
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Figure 4.1: Example of a measured micro-sphere with illustrated (a) depth-of-field (DOF) and

synthetic depth-of-field (SDOF); (b) arrangement of SDOFs in focus-tunable tomography; FP -

focal plane. [83]

spectrum with complex phases on Ewald’s spheres and calculating the inverse Fourier transform

(which takes place in the second stage of TVIC-GP) is equivalent to direct propagation of the

complex phase with the simplified wave equation presented above, as has been proved in [87],

and thus, the same errors are present. It should be noted that these errors are superimposed with

the errors that are due to inaccurate interpolation of data in the Fourier space. However, these

have known character [88] and were not analyzed in this chapter. Further literature covering

this subject can be found in [89, 90].

In the case of LAODT, if the errors in the calculated tomographic reconstruction increase

with the distance from the focal plane, one can define a Synthetic Depth of Field (SDOF) as a

region around the focal plane, in which the Rytov approximation holds. As it was described in

[90], the errors introduced by the Rytov approximation depend on the refractive index contrast

in the investigated sample, and thus the thickness of the SDOF will change when different ob-

jects are investigated. Unfortunately, currently there is no established method for defining the

thickness of the SDOF in the case of LAODT. Instead, it can be estimated for a given class of

biological micro-structures based on experiments. It is, however, clear that the size of SDOF

is significantly larger than the size of a standard DOF of the imaging system. Inside SDOF,

diffraction effects are compensated in the reconstruction process. A symbolic relationship be-

tween DOF and SDOF is presented in Fig. 4.1(a). If the measurement volume is large, i.e. the

thickness of a cell or tissue sample is significant, the SDOF may cover it only partially. As a

result, when a tomographic reconstruction is calculated, regions of a sample that are outside of

SDOF have lower resolution compared to the parts that are within the SDOF due to violation

of the Rytov validity condition. Such anisotropy of resolution deteriorates the measurement

conditions and reduces the quality of the reconstructed data.

In principle this problem can be solved by proper manipulation of input holographic data

and their processing as shown in [44, 91], where a complex field retrieved from each projection

is rigorously propagated to multiple planes that cover the range of the whole sample. In the
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next step, Rytov fields are calculated from the propagated fields and the final reconstruction is

obtained. This method requires capturing only a single set of projections, which is a significant

advantage. However, it involves extensive and time consuming data processing and it suffers

from narrowed field of view.

The spatially-variant accuracy problem can also be addressed with hardware-based meth-

ods, in which a sample stage is scanned in z direction while acquiring projections [92]. Unfor-

tunately, it is difficult to achieve high mechanical stability of such a setup, especially if a fast

measurement is to be performed. Also, this removes the main advantage of the LAODT, namely

stationarity of the investigated biological micro-object which is usually placed in a liquid envi-

ronment.

Therefore, I propose an alternative method of capturing projections for multiple positions of

focal planes in the measurement volume by introducing a liquid focus-tunable lens between an

imaging microscope objective and a CCD camera. This solution, called Focus-Tunable Tomog-

raphy (F-TT) [83, 93, 94], assures stationarity of an object and allows fast, optoelectronic-based

selection of focal planes, for which the sequential sets of projections are captured, followed

by tomographic reconstruction and stitching of the data volumes. This approach is combined

with the TVIC-GP procedure to fully address the main downsides of LAODT, that is the miss-

ing frequency problem and spatially-variant axial accuracy. In this section the measurement

methodology and full processing chain of this combined technique will be presented.

4.2 Main concept

The idea behind F-TT is to achieve quasi-uniform resolution within the whole object volume

through acquisition of multiple projections for a single illumination direction. Each projection

is acquired for a different position of the focal plane in the measurement volume. This way,

SDOFs that correspond to different focal planes cover the whole measurement volume (see Fig.

4.1(b)).

A focus-tunable lens is a liquid-filled membrane, whose optical power is controlled with

electric current and which can change its curvature 60 times per second. Thus, by applying

specific values of electric current, different sections of an investigated sample are conjugated to

the detector plane. The measurement scenario is presented in Fig. 4.2. First, the lens is set to

conjugate first focal plane (FP1) in the space of the object with the detector. Then, projections of

the object are acquired with the illumination scanning system and a sinogram is created for the

given optical power of the lens. Then, the electric current value is modified, and the procedure

is repeated for FP2 and FP3. As a result of this stage, multiple sinograms are recorded for

different focal planes in the object space.

In the example presented above, 3 focal planes were used. However, the number of focal
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planes within a measurement volume varies, and depends on three parameters. The first is thick-

ness of an investigated sample. For thick samples, more focal planes are necessary. The second

parameter is a scattering potential of the sample. In the case of weakly scattering objects the

distance between focal planes is higher than in the case of highly scattering ones. As a rule of

thumb, in the case of highly scattering samples, like tissue sections, in order to achieve highly

accurate results this distance should be set to around 0.5µm, whereas in weakly scattering ones it

may be around 2-3µm. It should be noted, however, that the combination of scattering potential

and thickness of an object has to be small enough for the light to pass through the measurement

volume in a state that allows to correctly retrieve its phase and amplitude. This mainly refers

to the phase unwrapping procedure, which in the case of strong noise or inconsistency in phase

data returns significant errors. The last parameter is the allowed duration time of the measure-

ment. If the biological sample under study is non-stationary or some dynamic phenomena are

to be measured, fewer focal planes are used to limit the projection acquisition time. Ideally,

the number of focal planes should be sufficient for the SDOFs to cover the whole volume of

an investigated sample. In practice, a trade-off between the uniformity of the resolution and

measurement time is necessary.

When all the data is acquired, the sinograms are processed. To achieve quasi-uniform resolu-

tion of a complex refractive index distribution, the following approach has been implemented.

First, each sinogram is reconstructed independently with an appropriate reconstruction algo-

rithm that works within the TVIC strategy. The choice of an algorithm depends on the type of

a measured sample and design of an optical setup. As a result, a series of 3D reconstructions

is obtained, where each reconstruction is calculated for a different focal plane position, which

means that for each reconstruction the SDOF covers a different region. In the next step, from

each reconstruction a fragment that is within its SDOF is extracted. Lastly, a final reconstruc-

tion is obtained through stitching of the cut-out fragments that represent data reconstructed with

high accuracy. The processing scheme is presented in Fig. 4.2(a).

4.2.1 Numerical procedures

As it has been already mentioned, an arbitrary tomographic reconstruction algorithm can be

used in F-TT. However, to achieve the best results, the chosen algorithm should be designed

for LAODT systems to minimize errors that are due to limited angular range of acquired pro-

jections. The method described in this paper is dedicated to investigation of non-piecewise-

constant, weakly scattering biological micro-samples, therefore it is justified to combine this

technique with the TVIC-GP approach, which will reconstruct the sinograms. The TVIC-GP

reconstruction of each of the sinograms is carried out in the same way as described in the previ-

ous sections. After a series of reconstructions are obtained, the appropriate fragments of these

reconstructions are extracted and stitched with each other.
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The stitching procedure aims to combine the correctly reconstructed parts of the object

(i.e. located within SDOFs) within a common coordinate system. The stitching method is a

correlation-based technique. This method minimizes stitching errors that are due to possible

object displacement between acquisition of consecutive sinograms and nonlinear response of a

focus-tunable lens to electric current. The input to this technique are TVIC-GP reconstructions

calculated for different focal planes. First, all obtained output matrices are sorted with respect

to the electric current value applied to the focus-tunable lens. At a time, two adjacent recon-

structions are stitched. For a given pair of reconstructions, e.g. for FP1 and FP2, two fragments

that lie between the two focal planes are extracted. These parts, which represent the same piece

of an analyzed object, are used to determine the translation vector. Initial matching of these

fragments is carried out based on experimental knowledge, whereas fine tuning is conducted by

calculating the cross-correlation between these fragments. The calculated translation vector is

then used to stitch the two reconstructions. Stitching of data based on the translation vector can

be successfully applied to F-TT because there is no rotation of the reconstructions calculated for

different focal planes with respect to each other. This procedure is then repeated for stitching

with the next reconstruction (i.e. with FP3).
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4.3 Conclusions

In this Chapter I present a novel method for extended depth-of-field LAODT in which the

change of a focal plane position is performed with a liquid focus-tunable lens, which together

with the proposed processing of data guarantees a uniform resolution in the whole measurement

volume. To implement this method, the LAODT setup with scanning of illumination have been

modified by adding an axial scanning module which allows for aberration-free shifting of the

focal plane during acquisition of object projections. The main advantage of this idea is lack

of mechanical movement in an optical setup. This allows for analyzing biological specimens

that are immersed in a liquid medium, without the risk of moving the object during projection

acquisition stage.

The experimental verification of this method is presented in Section 5.2.
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Chapter 5

Physical experiments

All the measurement setups described in this Chapter were built by MSc. Eng. Arkadiusz Kuś,

who also acquired all of the object projections [57].

Biological experimental samples have been prepared at the Department of Transplantology

and Central Tissue Bank, Centre of Biostructure Research of Medical University of Warsaw and

at the Department of Pathology of Warsaw Medical University.

All numerical procedures described in this section are carried out in Matlab environment

(version R2017a) on a PC with Intel i7 3770, 32 GB DDR3 RAM and Nvidia GeForce GTX

1070 8GB.

5.1 LAODT with TVIC-GP

In this section, the efficiency of the TVIC-GP approach is verified by presenting the reconstruc-

tion results for one technical reference object and one biological specimen. The reconstructions

calculated with TVIC-GP are compared to the ones obtained with the Direct Inversion (DI) and

GP methods. First, the optical setup used for the experimental verification is presented. Also,

the data processing methods are described.

5.1.1 LAODT setup

To carry out the experiments in this part, the LAODT optical setup, presented in Fig. 5.1, is

used for acquisition of projections of an investigated sample. The setup is based on the Mach-

Zehnder configuration. To realize the illumination rotation, a galvanometric mirror (GM) is

used. The laser beam (0.633µm wavelength) is divided into the object and reference beams

after it is reflected by the GM. This way, the beam inclination introduced by the GM affects

both arms which results in a constant carrier fringes frequency in the detector plane, which

simplifies the automatic fringe pattern analysis. The total magnification of the system is 76×

65



and the detector pixel size is 3.45µm. The samples are illuminated with a conical illumination

scenario (see Fig. 2.8(a)) with θ = 46.5◦. The numerical aperture of microscope objectives is

1.3. For each investigated sample, 120 projections are captured.

When all projections of an investigated sample are captured, data preprocessing steps are

conducted in order to retrieve the phase and amplitude information. In the LAODT optical

setup described above, the projections are captured as in-plane, off-axis holograms, therefore

to demodulate the object integrated phase and amplitude, the Fourier transform method [20]

for fringe analysis is used. It is followed by the phase unwrapping technique based on sorting

by reliability [34]. As was described in Section 2.3, each acquired projection is accompanied

by a reference projection that is captured with the same parameters (illumination angle, focal

plane position etc.) but without the investigated object in the measurement volume. These

reference projections undergo the same phase retrieval procedure as object projections. After

phase and amplitude information is extracted from all projections, complex phase is generated

from each projection by dividing each object complex field by the reference complex field

(from the reference projections), and by calculating the logarithm of this quotient, according

to the Rytov approximation described in Sec. 2.2.2. Lastly, the complex phases are stacked to

form a sinogram, which is the input data to the tomographic reconstruction procedure.

5.1.2 Objects description

First, in order to verify the proof of concept of the TVIC-GP, a static object with well defined

geometrical and optical parameters is measured. The selected object is the PMMA micro-

sphere (microParticles, Germany) with the diameter of 23.5±0.36[µm] and a constant refractive

index value in the whole volume nHe−Ne=1.4905 [95], so it represents an object with piecewise-

constant refractive index distribution. For the measurement the micro-sphere has been placed

in a sample chamber and immersed in a refractive-index-matching liquid at a slight mismatch

(nD=1.5200, nHe−Ne=1.5173, Cargille Series A).

To prove effectiveness of the TVIC-GP approach in reconstructing biological structures, a

fibroblast cell is measured. The chosen cell comes from the permanent mouse fibroblast cell

line Balb/c 3T3, which has been used in numerous validated biological tests [96]. The cells

were cultured on Glass Bottom Dish, 35mm (Ibidi, Germany) in DMEM, supplemented with

10% fetal calf serum, 4 mM glutamine, penicillin and streptomycin in humidified incubator at

37◦C, 7.5% CO2. The cells were seeded at concentration where single cells were available as

a target for microscopy. The description of the cell preparation procedure as well as the cells

themselves were provided by dr Dariusz Śladowski from Medical University of Warsaw. Unlike

the PMMA micro-spheres, these cells represent objects with non-piecewise-constant refractive

index distribution in the range of 1.36-1.41. These cells have length up to 50µm (although

longer cells can be observed).
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Figure 5.1: Optical setup for LAODT. GM - galvanometric mirror, L1,L2 - lenses, O1,O2 -

microscope objectives, S - specimen stage, T1,T2 - collimating lenses, IS - inverting prism.

Author: A. Kuś
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5.1.3 Experimental results

The sinogram of the technical sample has been reconstructed with the DI, GP and TVIC-GP

methods. In all cases, automatic algorithm stopping condition is used. All approaches are

supported with the non-negativity constraint. The results are presented in Fig. 5.2.

The Figure proves that the DI algorithm, as the most simple one does not minimize the dis-

tortion of the reconstruction that is present due to limited angular range of acquired projections.

The elongation in the z direction is clearly visible. What is more, the average refractive index of

the reconstructed micro-sphere in the x−y cross-section is too high (1.4963 while the reference

value is 1.4905). Also, a strong noise around the retrieved object is present.

The GP method turned out to be relatively successful in retrieving the distortion-free re-

construction. The average refractive index in the x− y cross-section (1.4929) is closer to the

reference value. However, the elongation in the z direction is not completely corrected and the

boundaries are still blurry. Again, the noise around the sample is present, although it is not as

strong as in the case of the DI method. This reconstruction was calculated after 22 iterations.

Finally, the TVIC-GP procedure proved to be the most effective. The average refractive

index (1.4931) is very similar to the result obtained with the GP algorithm. However, the

elongation of the reconstruction is now almost entirely corrected. Also, all object boundaries

are now sharper. This is caused by the mask, which, when applied in each iteration of the GP

algorithm, increased the average refractive index value of the sphere near the boundaries, which

proves the effectiveness of the TVIC strategy. What is more, the surrounding of the object is

free from noise and artifacts associated with LAODT. This reconstruction was calculated after

10 iterations.

The above observations are supported with the cross-sections presented in Fig. 5.3, where

the GP and TVIC-GP reconstructions are compared (the DI result is not presented as it clearly

returns erroneous reconstructions). For clarity, reference values of the measured micro-sphere

are also shown in the plot. It can be seen that the reconstruction calculated with the TVIC-

GP approach is closest to the refractive index distribution of the reference micro-sphere. In

the figure, the TVIC-GP reconstruction error is also presented. The error has been calculated

as the absolute value of the difference between the TVIC-GP reconstruction and the reference

data. One important conclusion that can be drawn from these images is that in the TVIC-GP

reconstruction, significant errors are present at the boundaries. These errors resemble ringing

artifacts, often present in image processing near sharp edges. Fortunately, beyond the boundary

region, the reconstruction quality is high and the refractive index error is smaller than 0.01.

Thus, in my opinion the metrological requirement stated in the "Aim of the Thesis" is fulfilled.

The experiment has been repeated for the biological cell. Again, reconstructions calculated

with DI, GP and TVIC-GP are compared. The results are shown in Fig. 5.4.

Similarly to the measurement of the micro-sphere, DI method gives the worst results. The
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Figure 5.2: Cross-sections through the center of reconstructions calculated with (a) DI, (b) GP

and (c) TVIC-GP procedures. All images share the same color scale. Note the inverted colorbar.

0

0.1

0.2

[px]

R
e
fr

a
c
ti
v
e
 i
n
d
e
x Ref

GP
TVIC-GP

x-cross-section (B-B)

T
V
IC

-G
P
 R

e
c
o
n
s
tru

c
tio

n

e
rro

r (re
fra

c
tiv

e
 in

d
e
x
)

TVIC-GP

error

0

0.1

0.2

[px]

R
e
fr

a
c
ti
v
e
 i
n
d
e
x Ref

GP
TVIC-GP

z-cross-section (A-A)

T
V
IC

-G
P
 R

e
c
o
n
s
tru

c
tio

n

e
rro

r (re
fra

c
tiv

e
 in

d
e
x
)

TVIC-GP

error

Figure 5.3: Central x- and z-cross-sections (B-B and A-A lines shown in Fig. 5.2) through the

reconstructions of a micro-sphere calculated with the GP and TVIC-GP methods.
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Figure 5.4: Cross-sections through the center of reconstructions of a biological cell calculated

with (a) DI, (b) GP and (c) TVIC-GP procedures. All images share the same color scale.

average refractive index is too low for the fibroblast cell and in the x − z cross-section, the

elongation of the reconstruction is not minimized. Also, the noise surrounding the retrieved

specimen is present.

GP approach provides visible correction of the reconstruction compared to the DI method.

The average refractive index is higher and the LAODT artifacts surrounding the sample are

weaker. However, the distortion of the reconstruction is not completely minimized and the

boundaries in the x− z cross-section are blurry. This result was obtained after 24 iterations.

The best results are obtained with the TVIC-GP procedure. All cross-sections have sharp

boundaries, the elongation of the reconstruction is completely minimized and the average re-

fractive index has the highest value. What is more, there are no LAODT artifacts around the

investigated specimen. This result was calculated after 14 iterations. In this reconstruction, a

nucleus of the cell is clearly visible in the x−y cross-section as the region with lower refractive

index distribution.

The above observations are confirmed by the cross-sections presented in Fig. 5.5. When

analyzing these plots it is clear that when GP algorithm is supported with the TVIC strategy,

the external geometry of the sample is retrieved with increased accuracy. But what is more

important, the average refractive index of the reconstructed specimen is higher which is consis-

tent with the results of numerical simulations presented in Section 3.3.2. This is the effect of

the support constraint applied in every iteration of the GP algorithm. This effect is especially

important near the boundaries of the reconstruction, where decreased refractive index values

are characteristic to LAODT reconstructions. This is the main proof of the effectiveness of the

TVIC strategy in enhancing the reconstruction quality.
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Figure 5.5: Cross-sections along B-B and A-A lines shown in Fig. 5.4 through the reconstruc-

tions of a biological cell calculated with the GP and TVIC-GP methods.
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5.1.4 Conclusions

The results presented in this section prove that TVIC-GP approach gives superior results when

biological micro-structures are measured. The LAODT artifacts that are usually present due

to limited angular range of acquired projections are entirely corrected and the refractive index

values are closer to the true refractive index distribution, as was proved by measuring the refer-

ence PMMA micro-sphere. Thus, this section verifies experimentally that it is possible to apply

compressed sensing techniques, like TpV algorithm to retrieve information about objects with

non-piecewise-constant refractive index distribution. Together with the numerical analyses

presented in Chapter 3, these results confirm the research hypothesis stated in the Thesis.

Another important advantage of the TVIC-GP approach, which has not been mentioned

so far, is associated with the method of storing reconstruction data by computers. When tomo-

graphic reconstruction algorithms, like DI or GP, are used with real experimental data to retrieve

3D refractive index distribution in the measurement volume, there is always some noise in the

voxels surrounding the reconstructed specimen. The computer does not, by default, distinguish

the sample from the background, so it has to store information about values in all voxels. Since

the 3D reconstructions are relatively big matrices (e.g. 400×400×400 [px] matrix consists of

64 million voxels) and information about each voxel is typically stored as a double-precision

floating-point number, the size of the file with this reconstruction is large (512MB in the afore-

mentioned case). When one takes into account the fact that usually numerous measurements

of a single biological specimen are carried out, the problem with limited memory space be-

comes crucial. This is a problem with not only ODT, but advanced image-based measurement

techniques altogether, where enormous quantities of data are produced.

When the TVIC-GP method is used to reconstruct tomographic projections, the surrounding

of the retrieved refractive index distribution of an investigated specimen is noise-free. This is

due to utilization of 3D mask in each iteration of the algorithm. As a result, all voxels of the

3D reconstruction that are outside the specimen have the same value - the refractive index of

an immersion liquid. Such data are efficiently compressed by a computer when saved. As a

result, files with significantly smaller size are obtained with the TVIC-GP method compared to

alternative reconstruction approaches. As an example, the tomographic reconstruction of the

micro-sphere calculated with the GP approach (Fig. 5.2(b)) occupies 161MB of disk space,

whereas the one calculated with the TVIC-GP method (Fig. 5.2(c)) occupies only 15MB, while

having the same size.
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5.2 Focus-tunable tomography with TVIC-GP

In this section, experimental verification of F-TT is carried out. For this purpose, two samples

are investigated: a reference technical object and two biological specimens. The objective of

the experiments is to prove effectiveness of the described measurement process and to recon-

struct 3D refractive index distributions with quasi-uniform resolution and minimized missing-

frequency errors.

5.2.1 Focus-tunable tomography setup

In order to carry out experiments in this Section, the LAODT setup (Fig. 5.1) has been extended

with an axial scanning module (ASM). The module is added between the beam splitter which

combines the object and reference laser beams and the CCD detector. ASM consists of a 4f

system with a focus-tunable lens in the Fourier plane. The focus-tunable lens is controlled

electronically to shift the object plane conjugate to the detector. This allows the system to

capture object projections with a different part of the specimen being in focus. The complete

system is presented in Fig. 5.6.

5.2.2 Objects description

First, in order to verify the proof of concept of F-TT, the PMMA micro-sphere described in

Section 5.1.2 is measured.

Next, two representatives of biological samples have been measured. The first specimen is

a cell from the permanent mouse fibroblast cell line Balb/c 3T3. This cell comes from the same

culture as the one measured in Section 5.1.1, however it is not the same cell.

The second biological sample, a tissue slice from a prostate cancer, was fixed in 4% for-

malin solution and embedded in paraffin. After a 4µm thick slice has been cut, it underwent

a standard histological procedure [97], however, without the haematoxylin and eosin staining.

The description of the tissue slice preparation stage and the tissue slice itself were provided by

dr Ewa Skrzypek from Medical University of Warsaw. From the investigated sample, a region

with red blood cells was chosen to be analyzed. The size of the measurement volume was 70µm

x 70µm x 2µm.

5.2.3 Experimental results

In the case of the micro-sphere, the conventional approach with a single focal plane produces

SDOF that does not cover the whole object, thus 4 focal planes, distant from each other by

2.5µm, have been used (recall Fig. 4.1). 360 projections were captured for each focal plane.

Conical illumination scenario has been utilized (Fig. 2.8(a)), with the zenith angle of 52◦.
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Figure 5.6: Optical setup for extended depth-of-field LAODT. GM - galvanometric mirror,

L1,L2 - lenses, O1,O2 - microscope objectives, S - specimen stage, T1,T2 - collimating lenses,

IS - inverting prism, ASM - axial scanning module. Author: A. Kuś [83]
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Since the object is symmetric, the experiment has been designed in such way that the combined

SDOFs from all focal planes covered only the upper half of the sphere. This allows to visualize

the difference between focus-tunable and standard tomography by comparing the reconstruction

of the top and bottom halves of this object. Despite the fact that the micro-sphere belongs to a

group of piecewise-constant samples, it has been reconstructed with both approaches, presented

in Fig. 3.3. This way, the full TVIC-GP procedure can be metrologically assessed and compared

with the TpV algorithm.

Figure 5.7 presents the z-y cross-section (z being parallel to the optical axis) through the

reconstruction calculated with the TVIC-GP procedure (according to the right part of Fig. 3.3).

Lines FP1-FP4 represent 4 planes that were conjugated with the detector plane through the

focus-tunable lens. The bottom half of the sphere has been reconstructed from a sinogram

acquired for the focal plane FP4. The upper half of the sphere is reconstructed with higher

quality, compared to the bottom half in terms of the object’s retrieved geometry and refractive

index distribution. This is confirmed by the vertical cross-section presented in Fig. 5.7(b), in

which the upper edge of the sphere is retrieved without a drop in the refractive index level near

the edge. It can be observed that in Fig. 5.7(b) the nature of noise in the cross-sections A-A

and FP4 is different. This is caused by the "speckles" visible in the reconstruction, which are

elongated in the z direction due to the resultant different spatial resolution in the x−y plane and

in the direction of the optical axis.

To quantitatively assess the obtained geometry, I compare the volume of the reconstructed

object to the theoretical volume of the object under study, which is equal to 6795µm±312µm3

(4.6% relative uncertainty). The volume of the retrieved sphere calculated based on the upper

half of the sphere (which is within SDOFs) equals 7413µm3 (9% error with respect to the

nominal value), while the same volume calculated based on the bottom half equals 8206µm3

(21% error with respect to the nominal value). These experimental volumes were calculated

as a sum of reconstruction voxels thresholded at the immersion liquid level. The increase of

volume in the case of the standard tomography is related to the distortion of 3D geometry in the

areas distant from the focal plane (as shown in Fig. 5.8(c,d)). This clearly shows the advantage

of the F-TT over the standard optical tomography in terms of the reconstructed geometry of the

object.

Figure 5.8 presents x-y cross-sections through the reconstruction calculated with the first

step of the TVIC-GP procedure: TpV algorithm (dedicated to piecewise-constant samples, like

the measured micro-sphere), and with the TVIC-GP strategy. The x-y cross-sections corre-

spond to planes FP4, FP1 and Z1, presented in Fig. 5.7. The results calculated with the TpV

algorithm provide highly homogeneous and noise-free refractive index distribution, which is

expected. The results obtained with the TVIC-GP procedure contain more noise due to lack of

piecewise-constant regularization utilized during retrieval of the refractive index distribution.
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Figure 5.7: Tomographic reconstruction of the 23.5µm PMMA micro-sphere calculated with

the TVIC-GP procedure: (a) z-y cross-section through a 3D reconstruction; (b) Vertical and

horizontal 1D cross-sections; FP1-FP4 - positions of focal planes, Z1 - plane which is compared

with FP1 plane in Fig.5.8, ST - standard tomography, F-TT - focus-tunable tomography. Note

the inverted colorbar. [83]

The difference between Fig. 5.8(d) and Fig. 5.8(f) shows the advantages of utilizing F-TT. Ide-

ally, both cross-sections should be identical, since they are taken from planes that are equally

distant from the central FP4 plane. However, since the cross-section presented in Fig. 5.8(f)

is extracted from the part of the reconstruction which is within the SDOF, its geometry and

refractive index distribution are of significantly higher quality. This is confirmed by Fig. 5.8(g),

in which one can notice that, unlike Z1 plane, the FP1 plane matches the theoretical geometry

and the refractive index value of the micro-sphere. The noise present in the results calculated

with the TVIC-GP method can be significantly limited by applying 3x3x3 median filtering (not

applied here).

Similarly to the technical object, in the case of biological samples the approach with a single

focal plane produces a SDOF that covers only a thin fragment of the investigated object. Thus,

multiple focal planes were used, and when SDOFs from all focal planes were combined, they

covered the whole volume of the sample. The projections have been reconstructed with a full

TVIC-GP procedure, dedicated to biological micro-objects.

The first biological sample, the fibroblast cell, has been measured with 4 focal planes, sepa-

rated from each other by 1.7µm. For each focal plane, 360 projections were acquired using the

conical illumination scenario, with the illumination zenith angle of 47.7◦.

Figure 5.9 presents the comparison between reconstructions calculated from one focal plane

(Fig. 5.9(a), standard tomography case) and 4 focal planes (Fig. 5.9(b), F-TT case). Fig. 5.9(c)

shows the x-y cross-section through the FP3, which is common for both reconstructions. The

advantage of F-TT is visible when one analyzes the details of both reconstructions, especially

the structure with the high refractive index, which might be associated with cell division, and a

pseudopod, marked with red arrows. When 4 focal planes are utilized, the high refractive index

76



(f)(d)

x

y

x

y

FP1Z1

10um

[px]

RI

(c)

x

y

Z1

10um(a)

x

y

FP4

10um

(b)

x

y

FP4

10um

(e)

x

y

FP1

10um

10um

T
V

IC
-G

P
 

T
p
V

 

A

A

A

A

R
I

0 50 100 150 200

MODEL
FP1
Z1

(g)

A-A

F-TTST

Figure 5.8: Visualization of the effect of the F-TT on 3D reconstruction of the PMMA micro-

sphere reconstructed with (a,c,e) TpV algorithm and (b,d,e) TVIC-GP procedure. (a,b) central

x-y cross-sections - FP4 plane in Fig. 5.7; (c,d) Z1 plane from Fig. 5.7 which is distant from

central plane by -7.5µm; (e,f) FP1 plane from Fig. 5.7 which is distant from the FP4 plane

by 7.5µm; (g) 1D cross-sections through (d) and (f) compared with the reference, theoretic

refractive index distribution. ST - standard tomography with 1 focal plane, F-TT - focus-tunable

tomography. Note the inverted colorbar. [83]
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Figure 5.9: TVIC-GP reconstructions of the 3T3 cell in: (a) standard tomography (ST) case

with 1 focal plane, (b) focus-tunable tomography (F-TT) case with 4 focal planes; (c) x-y cross-

section through the cell. FP1-FP4 - focal planes. [83]

structure becomes larger and adopts more regular shape. Also, a part of the pseudopod becomes

visible, which results in a larger pseudopod with more distinct boundaries.

The second biological micro-object is the tissue slice from a prostate cancer. 3 focal planes

were uniformly distributed within the 2µm thick measurement volume. 360 projections were

acquired for each focal plane using the conical illumination scenario, with the illumination

zenith angle of 47.7◦. From the whole tissue sample, a region with well-defined red blood cells

surrounded by cellular debris has been chosen as a region of interest.

Figure 5.10 shows comparison between the tomographic reconstruction calculated for one

focal plane, which is in the middle of the 2µm thick object volume (standard tomography case),

and the one calculated for 3 focal planes (F-TT case). The presented x-y cross-sections are

planes that are distant from the center of the measurement volume by 0.6µm. In the case of

the F-TT, the biological micro-structures are sharply reconstructed, whereas in the standard

reconstruction this plane suffers from reduced resolution. Also, the refractive index values

are, by average, higher in the stitched reconstruction. It should be noted, however, that such

differences are present in x-y planes distant from the center of the reconstruction only.

5.2.4 Conclusions

The described F-TT approach has been combined with the TVIC-GP reconstruction method.

Tests conducted on the reference object confirmed that this combined technique guarantees

both quasi-uniform resolution in the whole measurement volume and minimization of errors

that are present due to limited angular range of acquired projections. It has been shown that both
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Figure 5.10: Comparison of the standard tomography (ST) reconstruction of the tissue sam-

ple calculated for one focal plane with the focus-tunable tomography (F-TT) reconstruction

calculated for three different focal planes; (a) x-y and z-y cross-sections of the TVIC-GP recon-

struction calculated for one focal plane. The x-y cross-section shown presents a plane distant

from the focal plane (which is in the center of the measurement volume) by 0.6µm. The mag-

nified structure is the red blood cell marked with red arrow. (b) The same cross-sections of

the reconstruction calculated for three focal planes, uniformly distributed in the measurement

volume. [83]
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refractive index distribution and external geometry of an investigated sample are reconstructed

with increased quality.

The quasi-uniform resolution along z-axis, achieved in this system, extends the range of

cells that can be investigated with high accuracy. What is more, the reconstructions of a tissue

sample show that this approach is useful even when the thickness of an investigated sample is

small (∼ 2µm) but the Rytov condition is violated by the strong scattering properties of the

tissue. The capability of this method to conduct phase analysis of tissue slices without the

necessity of staining or labeling, makes the extended-depth-of-field LAODT a very promising

tool in new digital diagnostic methods in the field of histology.

The main disadvantage of this method is associated with the amount of data that has to

be captured. If N focal planes are utilized in the measurement process, N × S data has to be

captured, where S is the size of a sinogram for a single focal plane. This is a time-consuming

process both for the projection-acquisition and reconstruction stages. Currently, it takes 15

seconds per focal plane to acquire 180 projections, 10 minutes to preprocess the data and 10

minutes per focal plane to reconstruct the data with the TVIC-GP procedure on the computer

with parameters given at the beginning of this section. The method may be sped up by using

a faster camera (currently 14fps). What is more, the hologram preprocessing may be enhanced

by using CUDA and since the fringe orientation may be easily controlled in the presented setup,

other faster preprocessing approaches may be used [98]. However, in terms of presented solu-

tion, the main direction of further study is limitation of data acquired for each focal plane.
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Chapter 6

Conclusions and future trends

6.1 Conclusions

The Main Objective stated in the Thesis has been accomplished through presentation of a

full processing path that can be applied to the limited angle optical diffraction tomography

(LAODT) data when biological specimens are measured, including the preprocessing steps that

have to be carried out. However, the key part is the novel reconstruction strategy, called Total

Variation Iterative Constraint (TVIC). This procedure is, according to my knowledge, the first

tomographic reconstruction approach dedicated to biological micro-samples. By utilizing the

total p-variation (TpV) minimization, TVIC calculates reconstructions of the analyzed speci-

mens that are free from the LAODT artifacts. However, despite the fact that TpV minimization

is used, the non-piecewise-constant refractive index distribution of biological objects under

study is preserved in the reconstructions, which confirms the hypothesis stated in the Thesis.

This is thanks to an innovative way of using the TpV minimization. In TVIC, this regularization

mechanism is used to retrieve the external geometry only. The retrieval of the refractive index

distribution of internal structures is conducted with the tomographic reconstruction method of

choice, e.g. Gerchberg-Papoulis (GP) algorithm which dominates in the research literature re-

garding LAODT.

The numerical analyses presented in the Thesis proved that GP algorithm supported with the

TVIC strategy converges to a solution when noise-free input data are used. The same tests have

been repeated for noisy data and the reconstructions show that the TVIC-GP method gives sig-

nificantly better-quality results compared to GP algorithm which is not supported by the TVIC

strategy. The TVIC-GP gives also better reconstructions compared to the algorithms which di-

rectly implement TpV minimization procedure since these methods require constant-piecewise

refractive index distribution of investigated specimens and can be successfully applied only to a

very narrow group of bio-samples, like red blood cells. It has also been proven that the number
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of acquired object projections can be significantly limited without loss of the reconstruction

quality. What is more, a procedure for clearing the reconstruction from unwanted structures has

been presented. Through a dedicated processing scheme, this procedure removes information

from original sinograms about unwanted structures to enhance the effectiveness of the support

constraint in the GP algorithm.

The above numerical tests have been experimentally verified by performing measurements

of a reference PMMA micro-sphere and biological cells. The results show that TVIC-GP gives

superior results compared to alternative tomographic reconstruction approaches like DI or GP.

The refractive index values in the reconstructions are more correct and the elongation in the

direction of an optical axis is removed. As far as biological specimens are concerned, this

results in better visibility of internal structures. What is more, it has been shown that the files

with reconstructions calculated with the TVIC-GP method are at least 10 times smaller in size

than the ones calculated with other tomographic procedures.

The numerical simulations and experimental measurements carried out on a reference PMMA

micro-sphere show that the reconstruction error, understood as the maximum difference be-

tween the TVIC reconstruction and reference data, is not higher than 0.01, which was the re-

quirement stated in the "Aim of Thesis". This condition is violated only where steep boundaries

of an investigated sample are present. Correction of this phenomenon will be the objective of

my future works.

To accomplish the secondary task stated in the Thesis, which is increasing the depth-of-

field of LAODT, a procedure called focus-tunable tomography (F-TT) has been proposed. The

method includes hardware modifications, namely insertion of an electric focus-tunable lens in

front of a CCD detector used in LAODT. This allows the system to acquire a set of object sino-

grams with different parts of the object being in focus. What is more, a novel processing strat-

egy has been proposed which includes independent reconstructions of sinograms with TVIC-GP

and stitching of the parts of reconstructions which are within the synthetic depth-of-field. As

a result the refractive index distribution of an analyzed sample with enhanced depth-of-field is

obtained. The experimental verification proved that this approach can be successfully applied

to investigation of biological samples like cells or tissue slices to increase the overall quality.

To conclude, the most important results of my research are:

• Tomographic reconstruction strategy, called TVIC, which is dedicated to tomographic

investigation of biological micro-samples with non-piecewise-constant refractive index

distribution [59, 77, 80];

• Method of clearing the tomographic reconstruction from unwanted inclusions, like dust

particles, cellular debris and others to enhance effectiveness of the spatial support con-

straint in the iterative reconstruction.
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• Method of increasing the depth-of-field in LAODT [83, 93], which involved:

– Method of acquiring tomographic projections with different parts of an investigated

sample being in focus, by introducing a focus-tunable lens into the LAODT optical

system;

– Data processing procedure, including reconstruction and stitching algorithms, which

results in the tomographic reconstruction of an investigated specimen with extended

depth-of-field.

From the application point of view, I presented promising results of the tomographic and

holographic analysis of different biological specimens, including fibroblasts [65, 83], myoblasts

[64, 80, 94], tissue slices [83, 93], cancer cells [70] and bacterial colonies [15].

6.2 Future works

The research tasks that have to be addressed in the nearest future include:

• Decreasing the computation time for TVIC-GP through further utilization of parallel com-

puting with the CUDA technology.

• Optimization of the calculation time when F-TT is conducted with the TVIC-GP ap-

proach. In F-TT only a fragment of each independent reconstruction is used to create the

final result with extended depth-of-field. Region-of-interest tomography [99] is a promis-

ing technique which could potentially speed-up the reconstruction calculation process.

• Improvement of the quality of tomographic reconstructions with inner structures that have

steep boundaries.

The long-term objectives are:

• Development of a method for visualization of the calculated 3D reconstructions that

would be coherent with the expectations of the medical and biological communities.

• Development of the data processing strategy for the measurement of large histological

tissue slices.

• Development of tomographic reconstruction procedures that take higher order scattering

into account. This is especially important when histological tissue slices are to be inves-

tigated.

• Systematic work with the medical community on the interpretation of the results obtained

with with LAODT systems.
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• Development of numerical procedures utilizing deep learning techniques for the support

of diagnosis based on the results obtained with LAODT setups.

• Development of a commercial version of the LAODT setup with the team of collaborators

and implementation of the setup in medical institutions.
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[94] A. Kuś, W. Krauze, and M. Kujawińska. Focus-tunable lens in limited-angle holo-

graphic tomography, Proc. SPIE 10070 (2017), pp. 1007009–1.

[95] N. Tanio and T. Nakanishi. Physical aging and refractive index of poly (methyl methacry-

late) glass, Polym. J. 38, no. 8 (2006), pp. 814–818.

[96] H. Spielmann, M. Balls, J. Dupuis, W. Pape, G. Pechovitch, O. De Silva, H.-G. Holzhüt-

ter, R. Clothier, P. Desolle, F. Gerberick, et al. The international EU/COLIPA in vitro

phototoxicity validation study: results of phase II (blind trial). Part 1: the 3T3 NRU pho-

totoxicity test, Toxicol. in vitro 12, no. 3 (1998), pp. 305–327.

[97] K. S. Suvarna, C. Layton, and J. D. Bancroft. Bancroft’s Theory and Practice of Histo-

logical Techniques. Elsevier Health Sciences, 2013.

[98] G. Dardikman, M. Habaza, L. Waller, and N. T. Shaked. Video-rate processing in to-

mographic phase microscopy of biological cells using CUDA, Opt. Express 24, no. 11

(2016), pp. 11839–11854.

[99] A. Kyrieleis, V. Titarenko, M. Ibison, T. Connolley, and P. Withers. Region-of-interest

tomography using filtered backprojection: assessing the practical limits, J. Microscopy

241, no. 1 (2011), pp. 69–82.

92


