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Streszczenie

Celem niniejszej rozprawy doktorskiej było opracowanie nowej, uniwersalnej i użytecznej

miary rozróżnialności uszkodzeń. Opracowana miara znajduje zastosowanie między innymi

do rozwiązania problemu optymalnego doboru sygnałów pomiarowych na potrzeby diagnostyki

procesów. Miara może być stosowana do analizy różnych rodzajów systemów diagnostycznych,

w tym wykorzystujących binarne, wielowartościowe i ciągłe sygnały diagnostyczne. Unikalną

cechą opracowanej miary jest jej wrażliwość na słabą i silną rozróżnialność uszkodzeń.

W pracy została zaproponowana metoda budowy systemu diagnostycznego o wielowarto-

ściowych sygnałach diagnostycznych owłaściwościach odpowiadających systemowiwykorzystu-

jącemu sekwencje symptomów. Dzięki temu zaproponowanamiaramoże być także zastosowana

do analizy właściwości struktur diagnostycznych wykorzystujących informacje o kolejności (se-

kwencji) symptomów.

W pracy przedstawiono także metodykę konstrukcji liniowego problemu optymalizacji do-

boru sygnałów pomiarowych z zastosowaniem wprowadzonej miary rozróżnialności. Metodyka

ta pozwala na zdefiniowanie liniowej funkcji celu i liniowych ograniczeń, co ma istotne znacze-

nie w zastosowaniach praktycznych. W pracy zostały przedstawione przykłady praktycznego

zastosowania zaproponowanej miary rozróżnialności do:

• wyznaczenia maksymalnej wartości miary rozróżnialności uszkodzeń dla inteligentnego

elektro-pneumatycznego elementu wykonawczego z wbudowanymi funkcjami diagno-

stycznymi,

• doboru sygnałów pomiarowych i czujników pomiarowych do ogniwa paliwowego w wa-

runkach ograniczeń budżetowych,

• sformułowanie i rozwiązanie problemu optymalnego doboru sygnałów pomiarowych dla

laboratoryjnego zestawu trzech zbiorników. Uzyskane wyniki zostały porównane z rezul-

tatami osiąganymi innymi metodami.

W podsumowaniu zostały wskazane i przeanalizowane dalsze kierunki badań.

Słowa kluczowe: rozróżnialność uszkodzeń, miary rozróżnialności uszkodzeń, optymalny

dobór sygnałów pomiarowych.
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Abstract

The main aim of this thesis was to introduce a novel, generalized and practical metric of single

fault isolability. The proposed metric can be used to formulate an optimal sensor placement

problem for diagnostic purposes. The metric applies to various approaches to fault isolability.

It can be used with diagnostic structures using different diagnostic signals, e.g., binary, multi-

valued, continuous. The metric takes into account effects of weak and unidirectional strong

isolability.

A method of constructing multi-valued diagnostic signals that provide equivalent isolability

properties as symptoms sequences were proposed. It can be used to analyze diagnostic structures

based on the order of symptoms.

A method was proposed for constructing linear optimal sensor placement problem using the

proposed isolability metric. Using this method, the obtained objective function and constraints

using the metric are linear which is important in industrial applications. The resulting optimiza-

tion problem is then a standard Integer Linear Programming problem. The examples of practical

applications of the proposed metric were presented:

• finding the maximal value of the metric of fault isolability for an intelligent electro-

pneumatic actuator with embedded diagnostics and determine the optimal binary diag-

nostic structure,

• optimal sensor placement for a Fuel Cell Stack System with budgetary constraints,

• formulating and solving the optimal sensor placement problem for laboratory station for

the Three Tank System.

In the summary, further work was discussed and analyzed.

Keywords: fault isolation, metrics of fault distinguishability, optimal sensor placement.
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ε Vector of noise in the system
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Chapter 1

Introduction

1.1 Thesis and motivation

Themain aim of this thesis was to introduce a novel, generalized metric of single fault isolability.

This metric has both theoretical and usability purposes. From a theoretical point of view, it

can be used as a synthetic metric of fault isolability applicable to majority of methods of fault

isolation developed in recent years. From a usability point of view, it can also be used to

formulate an optimal sensor placement as a linear optimization problem.

Since many years there has been observed a strong, rising demand in the Fault Detection

and Isolation community for a development of a universal fault distinguishability metric that

should make it possible to formulate an optimal sensor placement problem. This metric should

be useful for applications in the wide range of diagnostic structural approaches, including those

that make use of multivalued discrete and continuous diagnostic signals. Additionally, this

metric should take into account effects of weak and unidirectional strong isolability. This thesis

responds to this demand.

Various metrics of fault isolability are known. However, there is no general metric. Current

definitions are insufficient because their applicability is limited. They are restricted to some

types of diagnostic signals, or they are difficult to calculate for complex diagnostic structures.

In order to propose a new of isolability metric, it was necessary to evaluate all known types
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of fault isolability metrics in terms of their:

• applicability to diagnostic structures based on multi-valued and continuous diagnostic

signals and on sequences of symptoms,

• ability to expose strength of isolability,

• applicability for constructing and solving of an optimal sensor placement problem.

1.2 Model-based fault detection and isolation

Different types of diagnostic methods are considered in the literature. In general, methods of

fault detection and isolation can be classified into three categories (Papadopoulos andMcDermid

2001; Roth 2010):

• data-driven, e.g. (Rostek et al. 2015; Yin et al. 2015; Yin et al. 2016),

• model-based, e.g. (Blanke et al. 2006; Górny and Ligęza 2002; Patton et al. 2000a),

• expert knowledge based, e.g. (Kościelny 1999; Syfert and Kościelny 2009).

Fault detection approaches based on analysis of statistical properties of signals are also studied.

Examples can be found in (Fillatre and Nikiforov 2007; Flouladirad and Nikiforov 2003).

In this thesis, we will focus on model-based approaches. Usually, three families of model-

based approaches are considered (Chen and Patton 2012; Travé-Massuyès 2014b):

• parameter estimation focused on parameters representing physical features of the diag-

nosed process (Pouliezos et al. 1989; Zhou et al. 2015),

• state estimation, where internal state variables are estimated by state observers (Frank

1994; Lan and Patton 2016),

• parity space, where elimination of unknown variables is used (Chow and Willsky 1984;

Wang et al. 2015).

Model-based approaches assume that a fault occurrence causes a discrepancy between the

observed behavior of the system and the behavior of the model of this system. The measure of

this discrepancy is a called residual. In order to calculate residuals in the online mode, only

known variables are used, i.e., model parameters, measurements, control signals and process

12



outputs. An equation that uses exclusively known variables is called the computational form

of a residual. In contrast, a residual equation in the internal form incorporates faults and their

influence on the process. In practice, it is often difficult to obtain the internal form of a residual

because it requires the exact mathematical model of a part of the diagnosed process.

Two main scientific communities are developing model-based diagnosis—the fault detection

and isolation (FDI) community, which originally comes from the automatic control field and

the diagnosis (DX) community, which has emerged from the computer science and artificial

intelligence fields (Travé-Massuyès 2014b).

1.3 Fault detection and isolation

In FDI methodology, three main stages of fault diagnosis are considered (Isermann and Balle

1997):

1. fault detection, where residuals are used to determine the presence of a fault,

2. fault isolation, where the kind and location of the detected fault is determined,

3. fault identification, where the size and evolution of the fault in time are estimated.

Most of the methods and approaches presented in this thesis are focused only on the first two

stages.

In FDI, residuals are frequently generated by means of Analytical Redundancy Relations

(ARRs) (Chow and Willsky 1984; Sanchez et al. 2015; Staroswiecki and Comtet-Varga 2001).

ARRs are relations without unknown state variables. In practice, we frequently obtain residuals

from balance equations or by comparison of outputs of models with their corresponding mea-

sured process outputs. Some models include information about how faults influence the process.

Other models are limited only to the fault-free mode.

Fault isolability in a diagnostic system is closely related to available diagnostic signals, i.e.,

outputs of detection algorithms (Korbicz et al. 2004; Kościelny 2001) and the form of notation

used for describing the relation between diagnostic signal values and faults. Three types of values

of diagnostic signals may be distinguished: binary, multi-valued (e.g., three-valued: −1, 0,+1)
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and continuous. There is also an approach which uses fuzzy diagnostic signals (Bartyś 2013;

Kościelny and Syfert 2006; Kościelny et al. 1999). It is beyond the scope of this thesis, however.

To formulate a diagnosis, knowledge of the relationship between faults and diagnostic signal

values is necessary. A symptom is the appearance of any value of a diagnostic signal that

indicates the presence of a fault. It is usually assumed that value 0 corresponds to the faultless

state and other values indicate faults. For a given fault, the vector of characteristic values of

diagnostic signals is called a signature. The relation between values of diagnostic signals and

faults will be referred to as the fault–symptoms relation. This relationship takes various forms

depending on the available diagnostic signals. In the case of binary diagnostic signals, the

incidence matrix (binary diagnostic matrix—BDM) is primarily used (Chen and Patton 1999;

Gertler 1998; Isermann 2006; Korbicz et al. 2004; Patton et al. 2000b). Another approach is

the Fault Information System (FIS) (Kościelny 1999; Kościelny et al. 2006), which assumes the

usage of multi-valued diagnostic signals. Other forms of notation can be derived from BDM

(Korbicz et al. 2004), such as logic functions, IF–THEN rules, and fault trees. Similar rules

can be derived from FIS. Those derivative forms of notation are alternative representations and

do not influence fault isolability because they do not provide any additional information about

faults (Korbicz et al. 2004). The relation between faults and continuous diagnostic signals is

described by regions in residual space (Isermann 2006; Korbicz et al. 2004), vectors of directions

in residual space (Chen and Patton 1999; Gertler 1998; Patton et al. 2000b) and sequences of

symptoms (Kościelny et al. 2013). Fuzzy reasoning about the fault–symptoms relation was also

studied, e.g. (Kościelny et al. 2008; Patton et al. 2000a).

The above relations are determined based on:

1. process modeling built on derived residual equations in the internal form (Gertler 1998),

2. learning, i.e., identifying regions in the diagnostic signal space that correspond to individ-

ual faults, processing data captured during process states with faults (Koivo 1994; Patton

et al. 1999),

3. expert knowledge (Kościelny 1999; Syfert and Kościelny 2009).

The model of a diagnosed process, making use of the relation between inputs, outputs, and
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faults (and possibly disturbances and measurement noise) is available only in the first case. Also,

the majority of publications in the field of fault isolation relate only to the first case. Isolability

definitions given in survey studies (Basseville 1997; Basseville 2001; Ding 2008) also refer to

the first case. They assume knowledge of the process model incorporating information about

faults.

1.3.1 Fault isolability

Faults are isolable if it is possible to explicitly determine which faults have occurred. Fault

isolability has usually been defined in the context of the adopted diagnostic method. Most often,

fault isolability was studied in the case of binary diagnostic signals (BDM, incidence matrix,

structure matrix) derived from the structure of linear equations of residuals in the internal form.

The following definitions (1.3.1 – 1.3.6) were given by Gertler in (Gertler 1998):

Definition 1.3.1. The structure matrix of a residual set expresses the cause–effect relationship

between faults and disturbances as inputs and residuals as outputs. A “1” in the intersection

means that the fault/disturbance does affect the residual while “0” means it does not.

Definition 1.3.2. A fault or disturbance is undetectable in a residual structure if its column in

the structure matrix contains only “0” elements.

Definition 1.3.3. Two faults or disturbances are indistinguishable if their respective columns in

the structure matrix are identical.

Definition 1.3.4. A structure is weakly isolating if all columns in the structure matrix are

different and nonzero.

Definition 1.3.5. A structure is unidirectionally strongly isolating if it is weakly isolating and if

no column in the structure matrix can be obtained from any other column by turning an arbitrary

number of “1”s into “0”s or by turning an arbitrary number of “0”s into “1”s.

Definition 1.3.6. A structure is bidirectionally strongly isolating of degree 1 if it is weakly

isolating and if no column can be obtained from another column by changing any single

element. Similarly, a structure is bidirectionally strongly isolating of degree k if no column can

be obtained from any other column by changing up to k elements.
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This definitionmeans that in a bidirectionally strongly isolating structure each pair of columns

differs in at least k + 1 positions.

In a unidirectionally strongly isolating structure, each pair of faults differs in at least two

entries. Firstly, where “1” is in the first column and “0” in the other one in the same row and

secondly, where “0” is in the first column and “1” in the other one.

In a weakly isolating structure, all faults are detectable (not undetectable) and mutually

distinguishable (not indistinguishable).

Example 1.3.1.

Following Gertler’s example (Gertler 1998), consider the following structures of residual sets:

M1 =



1 1 0

1 0 0

0 0 1

0 1 1


M2 =



1 1 0

1 1 0

1 0 1

0 1 1


M3 =



1 1 1

1 1 0

1 0 0

1 0 1


(1.1)

M1 and M2 are unidirectionally strongly isolating because any column cannot be turned into

another column by changing “0”s into “1”s or “1”s into “0”s. They are also bidirectionally

strongly isolating of degree 1 since changing only one element cannot turn any column into

another one.

M3 is bidirectionally strongly isolating of degree 1, but it is not unidirectionally strongly

isolating because the second and third columns can be obtained from the first column by turning

“1”s into “0”s.

Faults isolability, obtained on the basis of the structure of residuals derived from expert

knowledge, was studied in (Korbicz et al. 2004; Kościelny et al. 2006). The definitions for BDM

are equivalent to those given above.

In the case of multi-valued and continuous diagnostic signals, it is not always possible to

determine subsets of unisolable faults. Two faults can be isolable for some particular values

of diagnostic signals and not isolable for other values. Therefore, a definition of conditional

isolability was introduced in (Korbicz et al. 2004; Kościelny et al. 2006).
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1.4 Consistency-based diagnosis

There is a parallel branch of fault diagnosis developed by the computer science and artificial

intelligence community called DX. The DX approach relies upon methods derived from Reiter’s

consistency-based approaches (Reiter 1987) and later extended in (De Kleer andWilliams 1987;

De Kleer et al. 1992). These methods use a logic-based diagnosis process to explain the

differences between the observed and the correct behavior of the system.

De Kleer and Williams proposed in (De Kleer and Williams 1987) the general diagnostic

engine (GDE). In GDE, the diagnostic process is an iterative loop of behavior prediction,

conflict detection, candidate generation and refinement. Conflicts are sets of components that

cannot be all fault-free because assumptions about their proper behavior are inconsistent with

current observations and system description. Diagnosis candidates are hitting-sets of the conflict

sets. Usually, the set of diagnostic candidates is characterized by the set of minimal diagnosis

candidates. It should be noted that diagnosis is defined as a set of faulty components and this

implies that multiple faults are also considered.

1.4.1 Comparison of DX and FDI methods

In FDI, the relations between diagnostic signals and faults are calculated offline, during the

design phase of a diagnostic system. When determining the diagnosis, only values of residuals

are computed and evaluated in the online mode. This approach is very time efficient, especially

for time–critical processes. In Reiter’s original approach, not only are current observations

calculated, but the whole logical inference process is performed in the online mode. Such an

approach requires much more computational power and time. Therefore, it may be unacceptable

in the case of complex industrial systems. Moreover, the diagnosis of dynamic systems requires

additional extensions to the original approach (Lamperti and Zanella 2013). In the study (Pulido

and González 2004), the concept of Possible Conflicts (PC) was proposed. The conflicts can be

calculated in the offline mode. A similar approach was introduced in (Górny and Ligęza 2002)

as the Potential Conflict Structure (PCS), which is a local subgraph sufficient for determination

of a potential conflict.
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In DX approaches, multiple faults are handled in a natural way. Unfortunately, this may lead

to a combinational explosion of the number of diagnoses. In FDI approaches, the number of

faults is typically limited to single or double faults. There are some works that try to solve the

multiple faults problem by means of FDI methods (Bartyś 2014; Bartyś 2015; Bartyś 2016b).

In recent years, substantial effort has been made to combine FDI and DX methodologies

(Biswas et al. 2004). In (Cordier et al. 2004) the concept of conflict was compared to Analytical

Redundancy Relations (ARR), which is the concept underlying FDI. It was proven that under

specific conditions both approaches yield identical results. A comprehensive survey of this area

of research can be found in (Travé-Massuyès 2014b).

ARR completeness

In (Cordier et al. 2004), bridging techniques are based on a concept of Analytical Redundancy

Relation (ARR), which is a consistency relation used in FDI. The set of all ARRs leads to the

signature matrix (FS), which is equivalent to BDM used in this thesis. The definition of ARR

support as well as two of its properties, ARR-d-completeness and ARR-i-completeness, were

proposed to establish a correspondence between the DX and FDI approaches (Cordier et al.

2004).

Definition 1.4.1. The ARR support ARRi is the set of components (columns of a signature matrix,

faults) with a nonzero element in the row corresponding to this ARRi.

Definition 1.4.2. ARR-d-completeness property: The set E of ARRs is said to be d-complete if:

• E is finite;

• for any set of observations OBS, if SM ∪OBS |= ⊥, then ∃ARRi ∈ E such that {ARRi} ∪

OBS |= ⊥.

Definition 1.4.3. ARR-i-completeness property: A set E of ARRs is said to be i-complete if:

• E is finite;

• for any subset C of the set of components COMPS, C ⊆ COMPS and for any OBS if

SM(C) ∪OBS |= ⊥, then ∃ARRi ∈ E such that the support of ARRi is included in C and

{ARRi} ∪OBS |= ⊥.
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SM is the system model in the FDI approach. The restriction of the system model to the

subset of components C ⊆ COMPS is denoted by SM(C).

ARR-d-completeness is related to fault detectability. ARR-i-completeness means that all

multiple faults are isolable. In the paper (Cordier et al. 2004), the System Representation

Equivalence (SRE) property was presented. SRE defines conditions for which the FDI (SM)

and DX (SD) models representing the system are equivalent. It was also proven that when the

SRE property is met, the following statements are true:

1. Given an ARR, ARRi violated by OBS, the support of ARRi is a Reiter’s conflict.

2. If E is a d-complete set of ARRs, then if there exists a Reiter’s conflict for (SD, COMPS,

OBS), there exists an ARR ARRi ∈ E violated by OBS.

3. If E is i-complete, then given a Reiter’s conflict C for (SD,COMPS,OBS), there exists

an ARR ARRi ∈ E violated by OBS, whose support is included in C.

Exoneration assumption

In FDI, an exoneration assumption is commonly accepted:

Definition 1.4.4. ARR-exoneration (Travé-Massuyès 2014a): given OBS, any component (col-

umn of the signature matrix) in the support of an ARR satisfied by OBS is exonerated, i.e.,

considered normal.

Therefore, to point out a fault in diagnosis, all of its symptoms must come into existence.

This assumption is not always satisfied. Due to the dynamics of symptoms, the symptoms may

not appear simultaneously or may not even appear at all.

There is an analogous definition in the DX approach:

Definition 1.4.5. Component-exoneration: given OBS and c ∈ COMP, if SM(c) ∪ OBS is

consistent, then c is exonerated, i.e., considered normal.

The DX approaches are usually applied without any exoneration assumptions.

It was shown (Travé-Massuyès 2014a) that without exoneration assumptions and when the

SRE property is met, diagnoses obtained with DX and FDI are equivalent.
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1.5 Other definitions

Other important definitions are related to structural system description. Structural detectability

and isolability are widely used in diagnosability analysis (Düştegör et al. 2006; Frisk et al. 2012)

and sensor placement algorithms (Krysander and Frisk 2008). The main advantage of these

definitions is their close relationship to dedicated computational schemes. On the other hand,

they are limited to structural system description. Multi-valued diagnostic signals and symptom

sequences cannot be handled.

A definition of isolability was also proposed in (Travé-Massuyès et al. 2006). It is related

to the definitions that refer to residual space (Isermann 2006). It should be noted that in this

approach, conditional isolability is not symmetric. This definition allows the consideration of

multi-valued diagnostic signals but not symptom sequences.

The presented definitions are not complete as distinct faults may be characterized by a

particular sequence of symptom occurrence.

Fault isolability is a major issue in fault diagnosis, but no definition exists which covers all

of the different approaches.

1.6 Metrics of fault isolability

When designing a diagnostic system, it is essential to formulate all requirements precisely.

This allows the designer to develop a diagnostic system with sufficient efficiency and required

accuracy.

Fault isolability is one of the elementary attributes characterizing the quality of a diagnostic

process. Fault isolability is also a feature reflecting the effectiveness of a fault isolation process.

Due to this, it may be used for comparing the effectiveness of different methods of fault detection

and isolation.

Basic definitions of isolability given in Section 1.3.1 are applicable only when comparing

a pair of signatures of faults. Therefore, they are not sufficient to compare different diagnostic

systems, especially when different methods of fault detection and isolation are used. The process

of decision making during the design phase is therefore hindered.
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There are many methods of determining the set of measurement signals necessary for diag-

nostic purposes. They usually consider the required minimum fault detectability and isolability

of the diagnostic system (Krysander et al. 2008; Yassine et al. 2008). Some of the proposed

methods also maximize the designed fault isolability, i.e. (Spanache et al. 2004). Regardless of

the chosen method, simple, qualitative methods of analysis of fault isolability are insufficient.

A generalized, quantitative method of fault isolability analysis is required.

There are quantitative methods of determining fault isolability for pairs of faults. In the

simplest case, the Hamming distance between binary fault signatures can be used (Staroswiecki

et al. 2000). It is calculated as the total number of differences between two fault signatures.

Another, more advanced solution is the Isolability Ratio (Khorasgani et al. 2014). It is defined as

the ratio of the effects of one fault to the sum of effects of another fault and uncertainties. Other

examples are the distinguishability (Eriksson et al. 2013) and the expected distinguishability

(Jung et al. 2015). Both use the Kullback-Leibler divergence. Unfortunately, those measures

can only be used when analyzing a pair of faults. It is clear that to analyze a whole diagnostic

system other methods are required.

1.6.1 Diagnosability degree

Diagnosability degree is one of themost commonly usedmeasures of fault isolability (Krysander

et al. 2008; Rouissi and Hoblos 2013; Spanache et al. 2004; Yassine et al. 2008). It was defined

in (Travé-Massuyès et al. 2001). The value of this measure is calculated in two steps:

1. The set of all considered faults is divided into disjoint subsets of unisolable faults. Those

sets are called D-classes.

2. The number of D-classes denoted as Dc is divided by the number of all considered faults.

The obtained ratio is called diagnosability degree:

Dc

card(F)
. (1.2)

In the special case when all faults are isolable, the number of D-classes is equal to the number

of all considered faults. The diagnosability degree is then equal to 1.

If all faults are unisolable, then the diagnosability degree is equal to 1/card(F).
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Example 1.6.1.

Let us consider the example of a binary diagnostic matrix presented in Tab. 1.1.

Table 1.1: Example of a binary diagnostic matrix.

f1 f2 f3 f4

s1 1 1 1

s2 1 1 1

s3 1

Using the definition of weak fault isolability for binary diagnostic matrix, the following three

sets of unisolable faults can be distinguished: { f1}, { f2, f3}, { f4}. The diagnosability degree is

then equal to 3/4.

The diagnosability degree is a simple measure, easy to calculate and interpret. However, it

has some disadvantages. Fault diagnosability for each pair of faults is defined only for binary

diagnostic signals and does not apply to multi-valued diagnostic signals, for example the Fault

Information System FIS (Kościelny and Zakroczymski 2001).

Moreover, it does not reflect the difference between weakly or strongly isolating structures.

The problem was partially solved in the study (Kilic 2008), where the fuzzy diagnosability

degree was proposed. However, this solution was designed only for Discrete Event Systems

(DES) and cannot be easily extended to other types of diagnostic systems.

1.6.2 Diagnosis accuracy

In (Kościelny 2001), a simple fault isolability measure was defined. It is called the diagnosis

accuracy. It is calculated as the reciprocal of the average number of faults in a diagnosis.[∑
di∈D card(di)

card(D)

]−1

; card(D) , 0, (1.3)

where di ∈ D denotes the ith diagnosis from the set of all elementary diagnoses D. An

elementary diagnosis is a set of faults that are unisolable (Bartyś et al. 2006).

When all diagnoses point out only single faults, then the value of diagnosis accuracy is equal

to 1. In the general case, the value of diagnosis accuracy is in the range (0, 1].
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The value of this measure depends on the chosen diagnosis approach. For example, in the

case of a binary diagnostic matrix, diagnosis accuracy delivers different results based on whether

the exoneration assumption is used or not. This difference results from ignoring information

regarding the lack of some symptoms. Nevertheless, in some cases, such an approach is

justified, because, after the occurrence of a fault, symptoms do not appear simultaneously.

Different interim diagnoses are generated by the appearance of successive symptoms. The value

of diagnosis accuracy also depends on the exoneration assumption.

Example 1.6.2.

Let us return to the example of BDM given in Tab. 1.1. Three possible diagnoses can be drawn

from this table with the exoneration assumption: { f1}, { f2, f3}, { f4}. The average number of

faults in a diagnosis equals 4/3, and the diagnosis accuracy is equal to 3/4. In the case of

binary diagnostic signals and with the exoneration assumption, the value of diagnosis accuracy

is always equal to the diagnosability degree, because possible diagnoses are identical with

D-classes.

Without the exoneration assumption, there are also three possible diagnoses: { f1, f2, f3},

{ f2, f3}, { f4}. The diagnosis accuracy is then equal to [6/3]−1 = 1/2.

An alternative definition was given in (Bartyś et al. 2006) as the theoretical mean diagnosis

accuracy. It is defined as
1

card(D)

∑
di∈D

1
card(di)

; card(D) , 0. (1.4)

The definition (1.4) is sensitive to the number of faults in elementary diagnoses. Both definitions

yield identical results if all elementary diagnoses contain an equal number of faults. However, if

the number of faults is not equal for each diagnosis then (1.4) would give a numerically higher

result than (1.3).

Example 1.6.3.

Two examples of BDMs are presented in Tab. 1.2.

For the case (a) d1 = { f1, f2} and d2 = { f3, f4}. Both definitions of diagnosis accuracy give

identical results. [∑
di∈D card(di)

card(D)

]−1

=
1

card(D)

∑
di∈D

1
card(di)

=
1
2
. (1.5)
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Table 1.2: Comparison of two definitions of diagnosis accuracy.

(a)

f1 f2 f3 f4

s1 1 1

s2 1 1

(b)

f1 f2 f3 f4

s1 1 1 1

s2 1

For the case (b) d1 = { f1, f2, f3} and d2 = { f4}. Diagnosis accuracy given by (1.3) is still

equal to 1/2. However, diagnosis accuracy given by (1.4) is equal to:

1
card(D)

∑
di∈D

1
card(di)

=
2
3
>

1
2
. (1.6)

An average number of faults in a diagnosis can be difficult to calculate in the case of complex

diagnostic systems with multi-valued diagnostic signals or taking into account sequences of

symptoms. In this case, the number of possible diagnoses grows exponentially with the number

of faults.

1.6.3 Isolability index

The isolability index is often used as the fault isolability measure (Sarrate et al. 2012b; Sarrate

et al. 2014). It is defined as the number of ordered pairs of isolable faults. The maximum

number of the isolability index depends on the number of considered faults. If the isolability

relation is asymmetric, then the maximal isolability index is equal to K (K − 1), where K is the

number of considered faults. Similarly to the diagnosability degree, the isolability index is only

defined for binary diagnostic signals.

Example 1.6.4.

Following the example given in Tab. 1.1, with the exoneration assumption, there are ten ordered

pairs of faults if the first fault is isolable from the second: ( f1, f2), ( f1, f3), ( f1, f4), ( f2, f1),

( f2, f4), ( f3, f1), ( f3, f4), ( f4, f1), ( f4, f2), ( f4, f3). It is worth noticing that, assuming exoneration,

isolability is symmetric.

Without the exoneration assumption, there are eight such pairs: ( f1, f2), ( f1, f3), ( f1, f4),

( f2, f4), ( f3, f4), ( f4, f1), ( f4, f2), ( f4, f3).
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1.7 Solving the optimal sensor placement problem

Increasing the number of sensors is one of the simplest methods of increasing detectability

and isolability of faults (Kościelny et al. 2006). There are different criteria and constraints

formulated for selecting additional sensors. In general, this class of problems is called optimal

sensor placement problems.

The binary relation between faults and diagnostic signals is the most widely used form of

notation in FDI systems used for optimal sensor placement. In recent years, numerous papers

were devoted to different problems related to this issue.

In (Kościelny et al. 2006), the effects of a reduction of the sensor set on the fault distin-

guishability are analyzed. Two definitions for the quantitative evaluation of changes of fault

isolability and fault detectability were formulated. In (Travé-Massuyès et al. 2006), a method

of searching for the optimal sensor set based on ARRs is proposed. First, all ARRs are found

under the assumption that all sensor candidates are installed. Then, a sensor set, called Min-

imal Additional Sensor Set (MASS), is selected, which minimizes the cost while satisfying

detectability and isolability requirements. However, this solution is computationally expensive.

The diagnosability degree (1.2) was used as a measure of isolability. In general, the addition of

new sensors entails expanding the set of faults (sensor faults). The diagnosability degree may

then be nonmonotonic with respect to the cardinality of the set of sensors. It occurs when adding

a new sensor does not increase the number of D-classes. In (Travé-Massuyès et al. 2006), the

authors recommend that designers should assume that new sensors are sufficiently reliable and

do not introduce additional faults.

A modified approach was proposed in (Rosich et al. 2007). The incremental approach

was proposed in order to avoid an exponential explosion of a problem complexity. Instead of

computing the complete set of ARRs, they are generated iteratively. The algorithm minimizes

the cost of new sensors while satisfying the predefined FDI specifications.

In (Sarrate et al. 2007), the Binary Integer Programming is used to find the optimal sensor set

using a set of all possible Minimal Structurally Overdetermined (MSO) sets. FDI requirements

were ensured with nonlinear constraints. The resulting problem is computationally difficult to
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solve. This method was further improved in (Nejjari et al. 2010) and (Rosich et al. 2009). The

FDI requirements were specified as linear constraints. The cost function was also linear, so the

problem belonged to the Binary Integer Linear Programming (BILP) class. It can be efficiently

solved with the branch-and-bound algorithm with a standard Linear Programming (LP) solver.

Those methods were thoroughly compared in (Sarrate et al. 2012a).

Budgetary constraints with the isolability measure were analyzed in (Sarrate et al. 2012b)

using a structural system model. The proposed method was applied to a Fuel Cell Stack System.

The branch-and-bound algorithm was used to obtain the optimal solution.

In (Patan and Uciński 2008) the Fisher information was used to propose a method of solving

the optimal sensor placement problem for distributed parameter systems with cost constraints.

Again, the branch-and-bound algorithm was used to solve the problem.

1.8 Problem formulation

Various metrics of fault isolability are known. However, there is no general metric. Current

definitions are insufficient because their applicability is limited. They are restricted to some

types of diagnostic signals (e.g. diagnosability degree), or they are difficult to calculate for

complex diagnostic structures (e.g. diagnosis accuracy). Therefore, the following problems

arise:

• What universal properties of diagnostic structures should be extracted to formulate a

generalized metric of fault isolability? How should such a metric be formally defined?

• How to quantitatively analyze and differentiate weak and uni- or bidirectional strong

isolability? How do different exoneration assumptions affect metrics of isolability?

• How to use the proposed generalized metric of isolability in practical applications, in-

cluding formulating and solving the optimal sensor placement problem with different

constraints?

The main aim of this thesis is to propose a generalized metric of fault isolability.
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1.9 Organization of the thesis

In Chapter 2, formal definitions of isolability for different types of diagnostic signals are for-

mulated. Chapter 3 presents the new metric of isolability. In Chapter 4, the new measure of

isolability is compared with other known metrics of isolability. In Chapter 5, different optimal

sensor placement problems using the new metric are formulated. Chapter 6 summarizes the

thesis.
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Chapter 2

Isolability definitions for different types of

diagnostic signals

2.1 Introduction

Fault isolability is usually defined in the context of the adopted diagnostic method, in particular,

the form of notation of the faults–symptoms relation. Most often, fault isolability was analyzed

in the case of a BDM (incidence matrix) derived from the structure of linear equations of

residuals in the internal form (Gertler 1997; Gertler 1998).

Fault isolability, obtained on the basis of BDM and FIS derived from expert knowledge

was analyzed in the studies (Korbicz et al. 2004; Kościelny et al. 2006). In the case of

multi-valued and continuous diagnostic signals, it is not always possible to determine subsets

of unisolable faults. Then, conditional isolability is considered. Similarly, when analyzing

isolability in residual space, faults with partially overlapping regions in residual space are

considered conditionally isolable (Korbicz et al. 2004).

A definition of isolability was proposed in (Travé-Massuyès et al. 2006). It is related to the

definitions using residual space (Isermann 2006). It should be noted that conditional isolability

defined in (Travé-Massuyès et al. 2006) is not symmetric. This definition makes it possible to

consider multi-valued diagnostic signals, but it is not useful in the case of symptom sequences.
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2.2 Fault isolability based on binary diagnostic matrix

2.2.1 Binary diagnostic matrix

In the simplest case diagnostic signals are binary. There are many notations of the relation

between binary diagnostic signals and faults. The structure called Binary Diagnostic Matrix

is one of the most widely used structures. BDM is easily understood by industry experts and

engineers. It facilitates the cooperation and knowledge transfer between experts and designers

of FDI systems. Please note, that all definitions given in this section can be easily extended for

other binary forms of notation of diagnostic relations.

The following set of linear equations defining the dependence of process outputs on process

inputs and faults is often used in fault diagnostics (Gertler 1991; Gertler 1998):

y(s) = G(s)u(s) + H(s) f̂ (s) , (2.1)

where:

y – vector of outputs,

u – vector of inputs,

f̂ – vector of magnitudes of faults,

G(s) – matrix of input–output transfer functions,

H(s) – matrix of faults–output transfer functions.

This model is valid for linear systems. It can also describe nonlinear systems in the vicinity

of a selected operating point. This point usually corresponds to the nominal or average operating

conditions of the system.

A Binary Diagnostic Matrix is widely used for description of the faults–symptoms relation.

It can be obtained by many methods, e.g., by applying models considering influence of faults,

structural analysis or using expert knowledge. It was named in (Gertler 1998) as a structure

matrix of residual sets.

In the ideal case when the matrix H(s) is known then the elements of BDM can be obtained

29



in the following way:

v j,k =


0 if Hj,k(s) = 0

1 if Hj,k(s) , 0
. (2.2)

Therefore, a BDM defines a relation between faults and binary diagnostic signals. An example

of BDM is presented in Tab. 2.1.

Table 2.1: Example of binary diagnostic matrix.

f1 f2 f3

s1 1 0 1

s2 1 1 0

s3 0 1 1

BDM is a form of notation of a relationship specified as a subset of the Cartesian product of

diagnostic signal sets S = {s j : j = 1, 2, . . . , J} and faults F = { fk : k = 1, 2, . . . ,K}:

RF,S ⊆ S × F . (2.3)

A fault signature in BDM is defined as a vector of values of diagnostic signals corresponding

to a given fault. Therefore, the columns of the binary diagnostic matrix constitute the signatures

of the corresponding faults.

φ( fk) =
[
v1,k v2,k . . . vJ,k

]T
. (2.4)

In different forms of notation of diagnostic relations, the fault signature is usually defined in a

similar way.

BDM can be expressed in an alternative way using logic functions and logic rules. One rule

is associated with each fault fk :

I f (s1 = v1,k) ∧ · · · ∧ (s j = v j,k) ∧ (sJ = vJ,k) then fk . (2.5)

The rows of BDM can be represented by the following rules:

I f (s j = 1) then fa ∨ · · · ∨ fb, where: fa, . . . , fb ∈ { fk : v j,k = 1}. (2.6)

30



Example 2.2.1.

The following rules can be obtained from the BDM presented in Tab. 2.1,

1. I f (s1 = 1) ∧ (s2 = 1) ∧ (s3 = 0) then f1

2. I f (s1 = 0) ∧ (s2 = 1) ∧ (s3 = 1) then f2

3. I f (s1 = 1) ∧ (s2 = 0) ∧ (s3 = 1) then f3

The following rules can be given for the rows of this BDM.

1. I f (s1 = 1) then f1 ∨ f3.

2. I f (s2 = 1) then f1 ∨ f2.

3. I f (s3 = 1) then f2 ∨ f3.

2.2.2 Definitions of isolability

The definitions of unisolability and isolability of faults with the exoneration assumption based

on BDM (Kościelny et al. 2016) are given below.

Definition 2.2.1. Faults fk, fm ∈ F are unisolable with the exoneration assumption based on

BDM iff their signatures are identical.

fk RU |BDM fm ⇔ ∀
sj∈S
[v j,k = v j,m] (2.7)

RU |BDM denotes the unisolability relation based onBDM. Subsequent isolability and unisola-

bility relations, for other forms of notation, are denoted in a similar way.

Relation RU |BDM can be used to split the set of faults F into subsets of unisolable faults.

Definition 2.2.2. Faults fk, fm ∈ F are isolable in BDM under the exoneration assumption iff

their signatures are different.

fk RI |BDM fm ⇔ ∃
sj∈S
[v j,k , v j,m]. (2.8)
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This definition is analogous to the definition of a weakly isolating structure (Definition 1.3.4),

i.e., to a structure where residual response to every fault is nonzero and different (Gertler 1998;

Gertler 2000).

Theoretically, the maximum number of faults that can be isolated on the basis of the set of

J binary diagnostic signals is equal to (2J − 1). In a faultless state, the values of all diagnostic

signals are equal to zero.

The basic approach to increasing the fault isolability is based on generation of secondary

residuals. The method of designing secondary residuals depends on whether the internal form

of primary residuals is known (Gertler 1998).

Example 2.2.2.

In this example, we will analyze the two tank system presented in Fig. 2.1. This system can be

Tank #1 Tank #2

A1

A2

L1 L2

F

Figure 2.1: Two tank system. F – input flow rate, L1, L2 – water levels in the tanks, A1, A2 – cross

sections of tanks #1 and #2.

described by the following balance equations:

A1
dL1

dt
= F − α1,2S1,2

√
2g (L1 − L2), (2.9)

A2
dL2

dt
= α1,2S1,2

√
2g (L1 − L2) − α2S2

√
2gL2 , (2.10)

where α1,2 is the discharge coefficient and S1,2 denotes the cross section of pipes between

tanks #1 and #2.

The considered faults are presented in Tab. 2.2.
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Table 2.2: List of the considered faults in the two tanks system.

Fault Description

f1 Clog between tanks #1 and #2

f2 Clog in the outlet of tank #2

f3 Leakage from tank #1

f4 Leakage from tank #2

f5 Faulty measurement of input flow (F)

f6 Faulty measurement of level in tank #1 (L1)

f7 Faulty measurement of level in tank #2 (L2)

We can subtract both sides of equations (2.9) and (2.10) and extend them with information

about faults and obtain the following residuals:

r1 = F + f̂5 − f̂3 − A1
d(L1 + f̂6)

dt
− α1,2(S1,2 − f̂1)

√
2g

(
L1 + f̂6 −

(
L2 + f̂7

))
, (2.11)

r2 = α1,2

(
S1,2 − f̂1

) √
2g

(
L1 + f̂6 −

(
L2 + f̂7

))
+

− α2(S2 − f̂2)

√
2g

(
L2 + f̂7

)
− f̂4 − A2

d(L2 + f̂7)
dt

. (2.12)

The notation f̂k denotes the magnitude of the fault fk .

We can obtain the third residual by combining r1 and r2:

r3 = r1 + r2 = F + f̂5 − α2(S2 − f̂2)

√
2g

(
L2 + f̂7

)
+

− f̂3 − f̂4 − A2
d(L2 + f̂7)

dt
− A1

d(L1 + f̂6)
dt

. (2.13)

Binary diagnostic signals can be derived from residuals by thresholding. If a value of a

residual is smaller than some predetermined threshold, then the value of the corresponding

diagnostic signal is equal to 0. Otherwise, it is equal to 1. The binary diagnostic matrix

describing the two tank system is shown in Tab. 2.3.

Using Tab. 2.3 and Definitions 2.2.1 and 2.2.2, the following subsets of unisolable faults can

be determined: { f1}, { f2, f4}, { f3, f5}, { f6, f7}.
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Table 2.3: Binary diagnostic matrix of the two tank system.

f1 f2 f3 f4 f5 f6 f7

s1 1 0 1 0 1 1 1

s2 1 1 0 1 0 1 1

s3 0 1 1 1 1 1 1

2.3 Fault isolability in an information system

2.3.1 Fault information system FIS

The fault information system FIS is a multi-valued extension of the structure of residual sets.

FIS has been defined in (Korbicz et al. 2004; Kościelny 1999) as an information system:

FIS = 〈F, S,VS, q〉, (2.14)

where:

F - set of faults,

S- set of diagnostic signals,

VS =
⋃

sj∈S Vj - set of values of diagnostic signals,

Vj - set of values of diagnostic signal s j ,

q - function:

q : F × S → VS, (2.15)

associating each element of the Cartesian product with a subset of values of the diagnostic

signal s j characteristic of an occurrence of fault fk :

q( fk, s j) ≡ Vj,k ⊂ Vj . (2.16)

For example, Vj = {−1, 0,+1} and Vj,k = {−1,+1} ⊂ Vj .

We assume that the zero value of the diagnostic signal, s j = 0, corresponds to a fault-free

state The other values of diagnostic signals are symptoms of faults.
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FIS assigns a subset of diagnostic signals to each fault. In fact, the BDM is a special case

of FIS. If the set of values of all diagnostic signals is equal to Vs = {0, 1} and Vj,k is a single

element set, then FIS is identical with BDM. FIS has the following features:

• each diagnostic signal has its own individual set of values;

• the set Vj of values of the j th diagnostic signal is finite and contains at least 2 elements;

• every set Vj,k in FIS is a subset of the set Vj of values of the j th diagnostic signal.

The column of FIS generalizes the signature defined by the formula (2.4).

Φ( fk) =
[

V1,k V2,k . . . VJ,k

]T
. (2.17)

This signature can be rewritten in the form:

I f (s1 ∈ V1,k) ∧ · · · ∧ (s j ∈ Vj,k) ∧ (sJ ∈ VJ,k) then fk . (2.18)

We can also define the rules corresponding to the rows of FIS. The number of rules corresponding

to one row of FIS is equal to the number of values of diagnostic signal v ∈ Vj different from

zero.

I f (s j = v j,k , 0) then fa ∨ · · · ∨ fb, (2.19)

where: fa, . . . , fb ∈ { fk : v j,k , 0}.

The specific vector of values of diagnostic signals is called an alternative signature (Bartyś

2013). In the case of binary diagnostic signals, each fault is associated with exclusively one

alternative signature, while in the case of multi-valued diagnostic signals there might be multiple

alternative signatures.

2.3.2 Definition of isolability

In FIS, a fault can be indicated by multiple values of a diagnostic signal. Therefore, in some

cases it is not possible to unambiguously determine if a pair of faults is isolable or not. In

the studies (Kościelny et al. 2006) and (Kościelny et al. 2016), the following definitions of

unconditional and conditional unisolability in FIS were given.
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Definition 2.3.1. Faults fk, fm ∈ F are unisolable (unconditionally unisolable) in FIS iff their

signatures are identical.

fk RU |FIS fm ⇔ ∀
sj∈S

Vj,k = Vj,m. (2.20)

The conditional unisolability is possible in the case of FIS and other notations ofmulti-valued

forms of the diagnostic signals–faults relation. The faults can be unisolable only for some, but

not for all values of diagnostic signals.

Definition 2.3.2. Faults fk, fm ∈ F are conditionally unisolable in FIS iff for each diagnostic

signal, the intersection of subsets of its values corresponding to faults fk and fm is nonzero and

those faults are not unconditionally unisolable.

fk RCU |FIS fm ⇔ ∀
sj∈S

Vj,k ∩ Vj,m , ∅ ∧ ∃
sj∈S

Vj,k , Vj,m. (2.21)

Definition 2.3.3. Faults fk, fm ∈ F are unconditionally isolable in FIS iff there is a diagnostic

signal for which subsets of values corresponding to those faults are disjoint:

fk RI |FIS fm ⇔ ∃
sj∈S

Vj,k ∩ Vj,m = ∅. (2.22)

Since BDM is a special case of FIS, Definitions 2.3.1 and 2.3.3 can also be used for BDM.

If all diagnostic signals are binary, then conditional isolability is not possible.

The maximum number of faults that can be isolated on the basis of a set of tri-valued

diagnostic signals is 3J − 1. The maximum number of isolable faults does not exceed the

product of the power of sets Vj for all diagnostic signals:
∏

sj∈S
��Vj

��. In practice, the number of

isolated faults is usually much smaller.

Multi-valued evaluation of residual values may lead to an increased fault isolability in

comparison with binary evaluation. Usually, additional knowledge of the sign of a residual in

three-valued evaluation increases fault isolability.

Example 2.3.1.

FIS presented in Tab. 2.4 can be obtained for the two tank system described in Section 2.2.2 by

additionally considering the direction of the change of residuals.

It was assumed that component faults f1 − f4 can only have positive values while sensor

faults ( f5, f6 and f7) can change in the positive as well as in the negative direction. Applying
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Table 2.4: FIS for the two tank system.

f1 f2 f3 f4 f5 f6 f7 Vj

s1 +1 0 -1 0 -1,+1 -1,+1 -1,+1 {-1,0,+1}

s2 -1 +1 0 -1 0 -1,+1 -1,+1 {-1,0,+1}

s3 0 +1 -1 -1 -1,+1 -1,+1 -1,+1 {-1,0,+1}

Definitions 2.3.1, 2.3.2 and 2.3.3 results in the following conclusions (Tab. 2.5): { f6, f7} are un-

conditionally unisolable, { f3, f5} are conditionally isolable. All other faults are unconditionally

isolable.

Table 2.5: Distinguishability structure of pairs of faults for the FIS in Tab. 2.4.

f1 f2 f3 f4 f5 f6 f7

f1

f2 +

f3 + +

f4 + + +

f5 + + ± +

f6 + + + + +

f7 + + + + + −

+ unconditionally isolable pairs of faults

± conditionally isolable pairs of faults

− unisolable pairs of faults
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2.4 Fault isolability based on directional residuals

2.4.1 Vectors of fault directions in residual space

This method of fault isolation is referred to as directional residuals. In order to isolate faults, a set

of residuals is designed in such a way that the occurrence of faults is characterized by a particular

direction in the space of residuals (called parity space). Therefore, each fault corresponds to an

individually designed directional vector (Chen and Patton 1999; Gertler 1998). This approach

is illustrated in Fig. 2.2.

Primary directional residuals are derived from the equations of residuals given in the internal

form (2.2), by replacing the transfer functions Hj,k(s) with gains c j,k of the particular residuals:

c j,k =


0 if Hj,k(s) = 0

lim
s→0

Hj,k(s) if Hj,k(s) , 0
. (2.23)

Then the vector of gains of residuals corresponding to a given fault fk, k = 1, ...,K defines

the characteristic direction υk = [c1,k, ..., c j,k, ..., cJ,k] in the parity space. A fault, after the

transient state, manifests itself in this direction. This is the basis of the directional residual

method (Chen and Patton 1999; Gertler 1998; Patton et al. 2000b).

Fault isolation occurs after assessment of the coincidence of the direction of the residual

vector with the direction specific to individual faults as in Fig. 2.2.

Vectors of fault directions in the parity space are designed on the basis of a system model

affected by faults. In theory, vectors can also be determined with machine learning techniques.

However, this requires data from an object affected by faults and is hardly ever feasible. In

addition, expert knowledge is usually not sufficient for determination of directional vectors for

individual faults.

2.4.2 Definition of isolability

The following definition of fault isolability can be formulated based on the vectors of fault

directions in the parity space:
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Figure 2.2: Characteristic directions of faults in the parity space.

Definition 2.4.1. Faults are isolable if their directions in the parity space are different.

Such a definition is not very useful in practice because a small deviation in the directions

makes fault isolation problematic.

In practice, it is often not necessary to examine directions of all residuals. A sufficient

condition of isolability for any pair of faults is that corresponding directions in the plane defined

by any two residuals differ by more than a predetermined angle.

Directional fault vectors fk and fm in the plane defined by the residuals r j and rp have the

form: υk = [c j,k, cp,k] and υm = [c j,m, cp,m]. The angle between them is determined by the

formula:

α = arccos
c j,kc j,m + cp,kcp,m

|υk | |υm |
. (2.24)

Example 2.4.1.

Let us continue the example from Section 2.2.2. An alternative form of residuals can be

obtained by linearization and Laplace transformation:
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r1(s) = −L1 (s) +
k1

T1s + 1
F (s) +

k2

T1s + 1
L2 (s) =

= − f̂6 (s) +
k1

T1s + 1
f̂5 (s) +

k2

T1s + 1
f̂7 (s) +

k3

T1s + 1
f̂1 (s) −

k4

T1s + 1
f̂3 (s) , (2.25)

r2 (s) = −L2 (s) +
k5

T2s + 1
L1 (s) =

= − f̂7 (s) +
k5

T2s + 1
f̂6 (s) −

k6

T2s + 1
f̂1 (s) +

k7

T2s + 1
f̂2 (s) −

k8

T2s + 1
f̂4 (s) , (2.26)

r3 (s) = −L2 (s) −
k9s

T2s + 1
L1 (s) +

k10

T2s + 1
F (s) =

= − f̂7 (s) −
k9s

T2s + 1
f̂6 (s) +

k7

T2s + 1
f̂2 (s) −

k8

T2s + 1
f̂4 (s) +

k10

T2s + 1
f̂5 (s) −

k11

T2s + 1
f̂3 (s) .

(2.27)

The direction corresponding to a fault is given in the parity space spanned by primary

residuals. Consequently, the fault directions can be derived. These directions are shown in

Tab. 2.6.

Table 2.6: Fault directions in the three-dimensional space of residuals for the two tank system.

f1 f2 f3 f4 f5 f6 f7

r1 k3 0 −k4 0 ±k1 ±1 ±k2

r2 −k6 k7 0 −k8 0 ±k5 ±1

r3 0 k7 −k11 −k8 ±k10 ±k9 ±1

Each fault has a different direction in parity space. For example faults f2 and f4, which were

unisolable using BDM, can be easily isolated as they have opposite directions.

2.5 Fault isolability based on sequential residuals

The order of emergence of symptoms is important information which can be useful for diagnostic

inference in the diagnostic process. Different time instances of emerging symptoms can be used
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for isolation of faults in linear systems. For linear systems, the sequence of emergence of

symptoms can be determined for each fault on the basis of transmittance Hj,k :

Hj,k(s) = y j(s)/ f̂k(s); k = 1, . . . ,K, (2.28)

where y j(s) is the j th system output.

The order of emergence of symptoms depends on the dynamic properties of the system, the

dynamics of the fault (abrupt, incipient, etc.) and dynamic parameters of the fault detection

algorithm.

Let us assume occurrence of a single fault fk . The residual equation becomes:

r j(s)| fk = Hj,k(s) f̂k(s); fm = 0; m = 1, 2, . . . ,K, m , k . (2.29)

The residual can be transformed into the time domain by applying the inverse Laplace

transform:

r j (t)
��
fk
= L−1 r j (s)

��
fk
= L−1[Hj,k(s) f̂k(s)]. (2.30)

The time afterwhich the k th fault will affect the j th diagnostic signal can be easily determined.

Let us assume that the function f̂k(t) is a step function and the threshold value for the j th residual

is A j . Thresholds should be calculated for all residuals that are sensitive to fault fk . For

f̂k(t) different from a step function, the times of emergence of symptoms will be different, but

their order should not change for a given A j (Syfert and Kościelny 2009). Let us denote by

es j,p( fk) the elementary sequence, i.e., a sequence of two symptoms j and p for the fault fk . The

sequences are equal if the order of symptoms in all sequences is identical.

Sequences of some pairs of symptoms can be recognized using expert knowledge (Syfert

and Kościelny 2009) or by means of causal graphs GP (Sztyber et al. 2015; Sztyber 2017).

Graph GP is a convenient method of describing the structure of models. It makes it possible to

determine the sensitivity of the chosen model structures to faults. A simple example of such a

graph is shown in Fig. 2.3. Faults f1 and f2 are isolable because the elementary sequences are

different es1,2( f1) =< s1, s2 >, es1,2( f2) =< s2, s1 >.
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Figure 2.3: Example of a graph GP (Sztyber 2017); xi - process variables, u1 - input, yi - outputs,

s1(y1, u1), s2(y2, u1) - diagnostic signals: es1,2( f1) =< s1, s2 >, es1,2( f2) =< s2, s1 > .

2.5.1 Definition of fault isolability

The order of emergence of symptoms brings new, useful information apart from the values of

diagnostic signals. Therefore, an appropriate extension to the definitions of fault isolability have

been formulated (Kościelny et al. 2016):

Definition 2.5.1. Faults fk, fm ∈ F are unisolable (unconditionally unisolable) on the basis of

elementary sequences of symptoms iff their elementary sequences of symptoms are identical.

fk RU |SEQ fm ⇔ ∀
sj,sp∈S

es j,p( fk) = es j,p( fm). (2.31)

In many cases, elementary sequences make it possible to isolate faults, which are unisolable

on the basis of analysis of values of diagnostic signals.

Definition 2.5.2. Faults fk, fm ∈ F are unconditionally isolable on the basis of elementary

sequences of symptoms iff there exists at least one different elementary sequence of symptoms

for these faults.

fk RI |SEQ fm ⇔ ∃
sj,sp∈S

[es j,p( fk) , es j,p( fm)]. (2.32)

Definitions 2.5.1 and 2.5.2 require knowledge about both sequences es j,p( fk) and es j,p( fm).
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Definition 2.5.3. Faults fk, fm ∈ F are conditionally unisolable on the basis of elementary

sequences of symptoms iff they are not unconditionally isolable and there exists a pair of

symptoms for which the elementary sequence of symptoms can be determined for only one of

those faults.

If the internal form of residuals is known, one can design (Kościelny et al. 2013) pairs

of secondary residuals with different sequences for certain pairs of faults. In addition, these

residuals can have an arbitrary delays τk, j,p. Such a sequence can be written as:

esd
j,p( fk, τk, j,p) =< s j, τk, j,p, sp > . (2.33)

This sequence will be called a delay-designed elementary sequence.

Consequently, we can obtain a pair of secondary residuals for any fault fk (Kościelny et al.

2013). The same pair of primary residuals may be used for generating additional pairs of

secondary residuals for two or more faults that are detectable by primary residuals. In such a

case, different time delays between symptoms should be selected. Particularly, it can be assumed

that τk, j,p = 0. It means that the symptoms of signals s j and sp are appearing simultaneously.

Analogous definitions of unisolability and isolability of faults apply to the delay-designed

elementary sequence esd
j,p( fk, τk, j,p) and to the sequence es j,p( fk) (Def. 2.5.1 and 2.5.2).

Definition 2.5.4. Faults fk, fm ∈ F are unisolable on the basis of delay-designed elementary se-

quences of symptoms esd
j,p( fk, τk, j,p) iff the corresponding delay-designed elementary sequences

of symptoms are identical.

fk RU |DSEQ fm ⇔ ∀
sj,sp∈S

esd
j,p( fk, τk, j,p) = esd

j,p( fm, τm, j,p). (2.34)

Definition 2.5.5. Faults fk, fm ∈ F are isolable on the basis of delay-designed elementary

sequences of symptoms esd
j,p( fk, τk, j,p) iff there exists at least one different delay-designed ele-

mentary sequence for these faults.

fk RI |DSEQ fm ⇔ ∃
sj,sp∈S

esd
j,p( fk, τk, j,p) , esd

j,p( fm, τm, j,p). (2.35)

It is worth mentioning that (2.35) holds when τk, j,p , τm, j,p and the order of symptoms is the

same or when the order of symptoms is different.
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There is a significant difference between Definitions 2.5.2 and 2.5.5. In the case of Defi-

nition 2.5.5, faults with the identical order of a pair of symptoms but different delays are also

isolable. However, knowledge of the internal form of residuals is required to generate secondary

residuals.

Example 2.5.1.

Applying the method of sequential residuals for the two tank system given in Section 2.2.2 with

a known internal form of primary residuals results in the sequences of symptoms presented in

Tab. 2.7. Numbers indicate the order of symptoms. The appearance of two identical numbers

Table 2.7: Example of sequences of symptoms. The numbers indicate the order of symptoms.

f1 f2 f3 f4 f5 f6 f7

s1 1 - 1 - 1 1 2

s2 2 1 - 1 - 2 1

s3 - 1 2 1 2 2 1

in a signature means that it is impossible to determine which symptom will appear first. In this

example, it is assumed that the time constant of the second tank is greater than the time constant

of the first tank (T1 < T2).

UsingDefinitions 2.5.1 and 2.5.2, the following sets of unisolable faults can be distinguished:

{ f1}, { f2, f4}, { f3, f5}, { f6}, { f7}. The pair of faults { f6, f7} which were unisolable by means of

BDM with primary residuals can be isolated using sequences of symptoms.

It is possible to further improve isolability by designing secondary sequential residuals. In

the discussed two tank system, it is beneficial to introduce the following residuals:

r1,3/5 =
k10

(T2s + 1)
r1 =

k10

(T2s + 1)

(
− f̂6 (s) +

k1

T1s + 1
f̂5 (s)+

+
k2

T1s + 1
f̂7 (s) +

k3

T1s + 1
f̂1 (s) −

k4

T1s + 1
f̂3 (s)

)
, (2.36)
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r3,1/5 =
k1

(T1s + 1)
r3e−τ3,1s =

k1e−τ3,1s

(T1s + 1)

(
− f̂7 (s) −

k9s
T2s + 1

f̂6 (s)+

+
k7

T2s + 1
f̂2 (s) −

k8

T2s + 1
f̂4 (s) +

k10

T2s + 1
f̂5 (s) −

k11

T2s + 1
f̂3 (s)

)
. (2.37)

Residuals r1,3/5 and r3,1/5 make it possible to isolate f5 from f3. If fault f5 occurs, then both

residuals will be delayed by τ3,1.

2.6 Functional diagnosability and detectability

Analytical Redundancy Relations (ARR) were first proposed by Chow and Willsky in (Chow

and Willsky 1984). They combine input and output signals of a diagnosed process and their

derivatives into a set of relations. They can be used for determining the set of diagnostic

signals and their relationships with faults. The functional diagnosability definition for nonlinear

dynamical systems based on ARR was proposed in (Verdière et al. 2015).

The following, nonlinear dynamic parametric models are considered:

Ûx(t, p, f ) = g(x(t, p), u(t), f , ε, p),

y(t, p, f ) = h(x(t, p), u(t), f , ε, p),

x(t0, p, f ) = x0,

t0 ≤ t ≤ T .

(2.38)

Where:

x(t, p, f ) ∈ RN - vector of state variables,

y(t, p, f ) ∈ RM - vector of process outputs,

u(t) ∈ RR - vector of process inputs,

f - vector of faults,

ε - vector of stochastic noise in the system,

p - vector of process parameters.

Let us consider the set of ARRs:

wi( ȳ, ū, f , ε̄, p) = 0, i = 1, . . . , M (2.39)
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where:

wi - ith ARR,

ϑ̄ denotes some vector ϑ and its time derivatives up to some unspecified order (Staroswiecki

and Comtet-Varga 2001).

Any ARR equation can be divided into deterministic and stochastic parts. The stochastic

part is difficult to model. Therefore, very often only the deterministic part wd,i is used for fault

detection (Staroswiecki and Comtet-Varga 2001; Verdière et al. 2015):

wi( ȳ, ū, f , ε̄, p) = wd,i( ȳ, ū, f , p) = 0. (2.40)

The wd,i can be further decomposed:

wd,i( ȳ, ū, f , p) = w0,i( ȳ, ū, p) − w1,i( ȳ, ū, f , p). (2.41)

Combining (2.40) with (2.41), we can see that w0,i( ȳ, ū, p) = w1,i( ȳ, ū, f , p). The fault-free

term, w0,i, is also known as the computational form of a residual. The w1,i part depends on faults

and is known as the internal form.

Following the method presented in (Verdière et al. 2015), let us denote by f[k] the fault

vector, where all components except fk are equal to 0. f[k] can be then understood as a fault

vector resulting from the single fault fk .

Finally, the functional fault signature can be defined (Verdière et al. 2015).

Definition 2.6.1. The functional fault signature is a function FSig which associates the vector(
w1,i

(
ȳ, ū, f[k], p

) )
i=1,...,M to a fault fk .

From this definition, we can see that the functional fault signature FSig( fk) is a vector

consisting of the internal form of residuals calculated under the assumption of the occurrence

of a single fault fk . Let us also denote by FSig(i)( fk) = w1,i
(
ȳ, ū, f[k], p

)
the ith component

of FSig( fk). The functional signatures can be collected as columns of a Functional Signature

Matrix (Verdière et al. 2015).

Functional diagnosability has very good isolability properties. Unfortunately, it requires

knowledge about the internal form of residuals. This is a strong requirement that often cannot

be met in practice.
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2.6.1 Functional diagnosability definitions

The following set of isolability definitions of functional diagnosis was given in (Verdière et al.

2015):

Definition 2.6.2. Two faults fk and fm are input-strongly functionally isolable if for all inputs

u, there exists at least one index i and a finite time t1 ∈ (t0,T] such that for all t ∈ [t0, t1],

FSig(i)( fk) , FSig(i)( fm).

fk RSI |FUN fm ⇔ ∀
u∈RR

∃
i=1,...,M

∃
t1∈(t0,T]

∀
t∈[t0,t1]

FSig(i)( fk) , FSig(i)( fm). (2.42)

When all the faults are input-strongly functionally isolable, the model is said to be input-strongly

functionally diagnosable.

Definition 2.6.3. Two faults fk and fm are input-weakly functionally isolable if there exists an

input u and there also exists at least one index i and a finite time t1 ∈ (t0,T] such that for all

t ∈ [t0, t1], FSig(i)( fk) , FSig(i)( fm).

fk RW I |FUN fm ⇔ ∃
u∈RR

∃
i=1,...,M

∃
t1∈(t0,T]

∀
t∈[t0,t1]

FSig(i)( fk) , FSig(i)( fm). (2.43)

When all the faults are input-weakly functionally isolable, the model is said to be input-weakly

functionally diagnosable.

If the model is uncontrolled, the definition needs to be modified:

Definition 2.6.4. Two faults fk and fm are functionally isolable if there exists at least one index

i and a finite time t1 ∈ (t0,T] such that for all t ∈ [t0, t1], FSig(i)( fk) , FSig(i)( fm).

fk RI |FUN fm ⇔ ∃
i=1,...,M

∃
t1∈(t0,T]

∀
t∈[t0,t1]

FSig(i)( fk) , FSig(i)( fm). (2.44)

When all the faults are functionally isolable, the model is said to be functionally diagnosable.

When stochastic behavior is included in an uncontrolled model, then the following definition

can be given:

47



Definition 2.6.5. If two faults fk and fm act on the same residual j, they are said to be ε-

functionally isolable if there exists a time interval [t1, t2] ⊆ [t0,T] such that for all t ∈ [t1, t2]:

δ(FSig j( fk), FSig j( fm)) > ε, (2.45)

where δ is a distance in R.

Analogous definitions can be given for controlled models.

Example 2.6.1.

Let us use the internal form of residual r1 and r2 given in the example in Section 2.2.2:

r1 = F + f̂5 − f̂3 − A1
d(L1 + f̂6)

dt
− α1,2(S1,2 − f̂1)

√
2g

(
L1 + f̂6 −

(
L2 + f̂7

))
, (2.46)

r2 = α1,2

(
S1,2 − f̂1

) √
2g

(
L1 + f̂6 −

(
L2 + f̂7

))
+

− α2(S2 − f̂2)

√
2g

(
L2 + f̂7

)
− f̂4 − A2

d(L2 + f̂7)
dt

. (2.47)

The following functional signatures can be obtained from these residuals:

FSig1( f1) = f̂1
√

2g (L1 − L2)

FSig2( f1) = − f̂1
√

2g (L1 − L2) (2.48)

FSig1( f2) = 0

FSig2( f2) = f̂2
√

2gL2 (2.49)

FSig1( f3) = − f̂3

FSig2( f3) = 0 (2.50)

FSig1( f4) = 0

FSig2( f4) = − f̂4 (2.51)

FSig1( f5) = f̂5

FSig2( f5) = 0 (2.52)
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FSig1( f6) = α1,2S1,2

(√
2g (L1 − L2) −

√
2g

(
L1 + f̂6 − L2

))
+ A1

d f̂6
dt

FSig2( f6) = −α1,2S1,2

(√
2g (L1 − L2) −

√
2g

(
L1 + f̂6 − L2

))
(2.53)

FSig1( f7) = α1,2S1,2

(√
2g (L1 − L2) −

√
2g

(
L1 − L2 − f̂7

))
FSig2( f7) = −α1,2S1,2

(√
2g (L1 − L2) −

√
2g

(
L1 − L2 − f̂7

))
+ α2S2

(√
2g (L2) −

√
2g

(
L2 + f̂7

))
− A2

d f̂7
dt

(2.54)

All faults have different functional signatures. Therefore, they are input-weakly isolable

according to Definition 2.6.3. Moreover, during normal operation of the system, i.e., when the

input flow F > 0, L1 > L2 > 0, faults are also input-strongly isolable. If these conditions are

not satisfied, then some faults will become undetectable, e.g., when L1 = L2 then FSig1( f1) =

FSig2( f1) = 0 and, therefore, f1 will be unisolable.

2.7 Generalization of definitions of fault isolability

The definitions of fault isolability based on the values of the diagnostic signals (residuals)

can be combined with the definitions based on the sequences of symptoms. The condition of

fault unisolability while using two or more fault–symptoms relations simultaneously may be

formed as a conjunction of conditions of unisolability for the individual forms of notation of

fault–symptoms relations. However, the condition of isolability is a logic alternative of the

corresponding conditions.

One can distinguish two main cases regarding knowledge about a diagnosed system. The

first case is when models of fault influence on the system are known, i.e., when the internal form

of residuals is known. The second case is more common in practice and relates to the case when

only the computational form of residuals is known. For both of these cases, fault unisolability

and isolability conditions can be formulated by using two or more forms of notation for the

fault–symptoms relation simultaneously (Kościelny et al. 2016). In particular, it is appropriate
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to combine signature-based methods specified by the model values of diagnostic signals (BDM,

FIS) with signatures in the form of sequences of symptoms.

Below, generalized definitions of isolability are presented for the case where both forms of

residuals, internal and computational, are known.

Definition 2.7.1. Faults fk, fm ∈ F are unisolable (unconditionally unisolable) based on delay-

designed sequences of symptoms and FIS iff the conditions, which are the conjunction of

conditions (2.20) and (2.34), are met:

fk RU |FIS,DSEQ fm ⇔ [ ∀
sj∈S

Vj,k = Vj,m] ∧ [ ∀
sj,sp∈S

esd
j,p( fk, τk, j,p) = esd

j,p( fm, τm, j,p)]. (2.55)

Definition 2.7.2. Faults fk, fm ∈ F are isolable (unconditionally isolable) based on delay-

designed sequences of symptoms andFIS iff the conditions, which are the alternative of conditions

(2.22) and (2.35), are met:

fk RI |FIS,DSEQ fm ⇔ [ ∃
sj∈S

Vj,k ∩ Vj,m = ∅] ∨ [ ∃
sj,sp∈S

esd
j,p( fk, τk, j,p) , esd

j,p( fm, τm, j,p)]. (2.56)

For a similar case, when only residuals in the computational form are known, the following

definitions can be given:

Definition 2.7.3. Faults fk, fm ∈ F are unisolable (unconditionally unisolable) on the basis of

FIS and sequences of symptoms iff signatures and sequences of those faults are identical. Thus

the conditions (2.20) and (2.31) are met:

fk RU |FIS,SEQ fm ⇔ [ ∀
sj∈S

Vj,k = Vj,m] ∧ [ ∀
sj,sp∈S

es j,p( fk) = es j,p( fm)]. (2.57)

Definition 2.7.4. Faults fk, fm ∈ F are (unconditionally) isolable on the basis of FIS and

sequences of symptoms iff there is a diagnostic signal, for which subsets of values corresponding

to those faults are disjoint or their elementary sequences of symptoms are different. This means

combining conditions (2.22) and (2.32).

fk RI |FIS,SEQ fm ⇔

[ ∃
sj∈S

Vj,k ∩ Vj,m = ∅] ∨ { ∃
sj,sp∈S

[es j,p( fk) =< s j, sp >] ∧ [es j,p( fm) =< sp, s j >]}. (2.58)

With the above definitions, using knowledge (usually incomplete) about sequences of symp-

toms makes it possible to increase fault isolability in comparison with reasoning only on the

basis of signatures, defined by exemplary values of diagnostic signals.
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2.8 Summary

The set of formal definitions of fault isolability and unisolability on the basis of binary diagnostic

matrix, knowledge of the sequence of symptoms and FIS information system have been presented

in this chapter. These faults–symptoms relations are designed based on system modeling, taking

into account fault influence and expert knowledge.

A primary method of increasing fault isolability is increasing the number of measured

signals. This makes it possible to generate additional residuals. However, it is not always

possible or economically justified.

Another possibility is to design secondary residuals. This is promising when the internal

form of residuals is known and when models with fault influence are available. There are also

some limited possibilities to generate secondary residuals when only the computational form

is known. An alternative or complementary method of increasing fault isolability can be the

application of multi-valued or continuous residual evaluation instead of a binary one. Using

FIS with tri-valued residuals instead of binary is particularly purposeful. This approach can be

used in case where system models including fault influence are known, as well as when expert

knowledge is available.

An additional possibility to increase fault isolability results frommaking use of the knowledge

of sequences of symptoms. A different order of symptoms, or even the same order, but with a

different delay, makes it possible to isolate faults, which are unisolable when analyzing only the

values of diagnostic signals. Knowledge of the sequence of symptoms is complementary to the

knowledge of the signatures of faults from BDM or FIS and to the knowledge of the directions

of faults in the residual space.
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Chapter 3

New metric of fault isolability

3.1 Introduction

The metrics of fault isolability presented in previous chapters have substantial limitations. For

example, the diagnosability degree does not refer to weak and strong isolability. Both diag-

nosability degree and isolability index cannot be used with multi-valued diagnostic signals and

sequences of symptoms. Diagnosis accuracy is very complex and computationally expensive,

and therefore it is cumbersome in some applications, e.g., optimal sensor placement. Conse-

quently, there is a need for a new universal metric of isolability. The following requirements

should be essential for this metric:

• It should be possible to use the proposed metric with different types of diagnostic signals,

i.e., binary, multi-valued, continuous, and sequences of symptoms.

• The metric should reflect weak and strong isolability.

• Themetric of isolability should be applicable to formulating and solving an optimal sensor

placement problem.

3.1.1 Bidirectional and unidirectional fault isolability

The exoneration assumption described in Section 1.4.1 states that if for any fault, some of its

symptoms are not present, then the fault is exonerated. However, in practice, symptoms usually
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do not appear simultaneously. Sometimes, when the magnitude of a fault is too small, some

symptoms may even not appear at all. This is closely connected with the sensitivity of diagnostic

signals to the magnitude of the fault. This can often lead to incorrect diagnoses or unisolable

faults.

Example 3.1.1.

Let us analyze the example of a diagnostic system with two weakly isolated faults presented in

Tab. 3.1.

Table 3.1: Example of weak isolability.

f1 f2

s1 1 1

s2 1

After the occurrence of the fault f2, there are two possible sequences of symptoms. If the

exoneration assumption is taken, then diagnosis would be performed in the following way:

• The first symptom is s1 = 1. The diagnosis is then { f1}, which is incorrect. After some

time, the symptom s2 = 1 appears and the diagnosis changes to the correct one: { f2}.

• The first symptom is s2 = 1. It can only be interpreted as an unknown fault under

the exoneration assumption. After the appearance of the second symptom, s1 = 1, the

diagnosis points to { f2}.

Without the exoneration assumption some diagnoses are different:

• After the appearance of s1 = 1 the diagnosis would be { f1, f2}. Then it would be reduced

to { f2} after the appearance of s2 = 1.

• If s2 = 1 appears first then the diagnosis would be { f2} and it would remain so regardless

of the later emergence of s1 = 1.

After the occurrence of the fault f1, the only symptom is s1 = 1. With the exoneration

assumption, the diagnosis is { f1}. This is a more accurate diagnosis than the diagnosis without

the exoneration assumption, which is { f1, f2}.
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From this example, we can see that without the exoneration assumption diagnosis includes

all faults that can explain current symptoms. Therefore, diagnoses can be less precise, but they

do not exclude the real fault even in the case when some of its symptoms did not appear.

Strong isolability is required to improve the robustness of a diagnostic system. Two basic

definitions were given in Section 1.3.1: bidirectional and unidirectional strong isolability. Let us

analyze how those definitions affect the diagnoses with and without the exoneration assumption.

Bidirectional strong isolability

Example 3.1.2.

An extension of the previous example is presented in Tab. 3.2. This is a diagnostic matrix

with bidirectional strong isolability with degree 1. However, it is not unidirectionally strongly

isolable.

Table 3.2: Example of a BDM with bidirectional strong isolability degree 1.

f1 f2

s1 1 1

s2 1

s3 1

Let us assume that symptoms do not appear simultaneously. After the occurrence of the fault

f2, with the exoneration assumption, the following scenarios are possible:

• If s1 = 1 is the first symptom, then: { f1} → unknown fault→ { f2}.

• Otherwise, if the first symptom is s2 = 1 or s3 = 1: unknown fault→ { f2}.

Without the exoneration assumption:

• If s1 = 1 is the first symptom, then: { f1, f2} → { f2}.

• If the first symptom is different, the diagnosis is { f2} from the beginning.

After the occurrence of the fault f1, the diagnosis with the exoneration assumption is { f1}.

Without this assumption it is { f1, f2}. This is the same as for the previously analyzed, weakly

isolating system.
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A new diagnostic signal added to increase the degree of bidirectional strong isolability

without introducing unidirectional strong isolability would not affect those results. That is

because this additional signal does not affect the set of possible diagnoses.

Without the exoneration assumption, possible scenarios of evolution of diagnoses are iden-

tical for the weakly isolating structure and for the bidirectionally strongly isolating diagnostic

structure. That is because additional information about lack of some symptoms, available in

a bidirectionally strongly isolating diagnostic structure, is ignored without the exoneration as-

sumption. Moreover, for bidirectional fault isolability with the exoneration assumption, there are

more possible combinations of symptoms resulting in an unidentified fault, because the number

of possible combinations of symptoms increases with the number of diagnostic signals, but the

number of signatures of faults remains constant.

Unidirectional strong isolability

Example 3.1.3.

Let us analyze the diagnostic matrix presented in Tab. 3.3. It is an extension of the diagnostic

structure presented in Tab. 3.1. The additional diagnostic signal s3 provides the unidirectional

strong isolability property. It is also bidirectionally strongly isolating structure with degree 1.

Table 3.3: Example of a BDM with unidirectional strong isolability.

f1 f2

s1 1 1

s2 1

s3 1

After the occurrence of the fault f2, with the exoneration assumption, there is one possible

scenario: unknown fault→ { f2}. Without the exoneration assumption, there are two possible

scenarios:

• { f1, f2} → { f2} if s1 = 1 is the first symptom,

• { f2} if s2 = 1 is the first symptom.
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The case of the occurrence of the fault f1 is similar. After the occurrence of the fault f1, with

the exoneration assumption, there is also only one possible scenario: unknown fault → { f1}.

Without the exoneration assumption, there are two possible scenarios:

• { f1, f2} → { f1} if the first symptom is s1 = 1,

• { f1} if s3 = 1 is the first symptom.

The unidirectional strong isolability makes it possible to reduce false diagnoses when ana-

lyzing symptoms with the exoneration assumption. It comes from the definition of the unidirec-

tionally strongly isolating structure (1.3.5), that there is no set of all symptoms of a fault that is

also a subset of symptoms of another fault:

@ ( fk, fm ∈ F, k , m) ∧
(
{v j,k : v j,k , 0} ⊆ {v j,m : v j,m , 0}

)
. (3.1)

Under the exoneration assumption, all symptoms need to appear in order to indicate that a

particular fault occurred. Therefore, regardless of the order of appearance of symptoms, there

are no false diagnoses.

When comparing bi- and unidirectional strong isolability one can see that unidirectional

strong isolability provides qualitative improvement of diagnoses. The bidirectional strong

isolability by itself does not improve the precision of final diagnoses. It provides redundancy

in diagnostic signals, improving robustness of a diagnostic inference. Although bidirectional

strong isolability is desired, it does not improve isolability properties. It is especially visible in

the case of the diagnostic reasoning without the exoneration assumption. Therefore it is more

convenient for practical applications, due to natural dynamic properties of diagnostic signals.

Therefore, this work is focused on developing isolability metrics that particularly emphasize

unidirectional strong isolability.

3.1.2 General qualitative definitions of isolability

The definitions of weak and unidirectional strong isolability given by Gertler are applicable only

for binary diagnostic signals. Therefore, there is a need to formulate more general qualitative

definitions.
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Definition 3.1.1. A fault fk is excluded by a signature φ if the fault fk cannot explain the

signature φ.

Using this definition, we generalize the Gertler’s definitions of isolability recalled in Sec-

tion 1.3.1. The following general definitions can be formulated:

Definition 3.1.2. Faults fk, fm ∈ F are weakly isolated iff each alternative fault signature φ( fk)

excludes the fault fm, or each alternative fault signature φ( fm) excludes the fault fk .

Definition 3.1.3. Faults fk, fm ∈ F are unidirectionally strongly isolated iff each alternative

fault signature φ( fk) excludes the fault fm, and each alternative fault signature φ( fm) excludes

the fault fk .

Definition 3.1.4. Faults fk, fm ∈ F are conditionally weakly isolated iff they are not weakly

isolated and there exists an alternative fault signature φi( fk) that excludes the fault fm, or there

exists an alternative fault signature φ( fm) that excludes the fault fk .

Definition 3.1.5. Faults fk, fm ∈ F are conditionally unidirectionally strongly isolated iff they

are not strongly isolated, and there exists an alternative fault signature φi( fk) that excludes the

fault fm, and there exists an alternative fault signature φ( fm) that excludes the fault fk .

3.2 Proposition of a new measure of isolability

The definitions given in the previous section provide a background for a qualitative evaluation

of isolability. In the given context, a quantitative approach should be introduced in order to

propose a new measure of isolability. The following algorithm is proposed for calculating this

measure:

1. For every ordered pair of faults ( fk, fm) calculate the value which characterizes how often

alternative signatures of the fault fk exclude the fault fm. Normalize this value to the range

[0, 1].

2. Calculate the sum of values obtained in the previous step.

3. Normalize the obtained result by a factor 1
K(K−1) , where K = card(F). Thanks to that, the

final value of measure of isolability does not depend on the number of faults.
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3.2.1 Binary diagnostic signals

An implementation of the measure of isolability for a BDM was proposed in (Rostek 2014).

The value of this measure is calculated in two steps:

1. Calculate the value of the following discrete function for all possible ordered pairs of

faults:

D: F ×F → {0, 1}, (3.2)

where: F is the set of faults and fk ∈ F, i = 1 . . . K are particular faults. It is assumed

that the value D ( fk, fm) = 1 when the appearance of all symptoms of the fault fk excludes

the fault fm. If this is not true, then D ( fk, fm) = 0.

2. Calculate the value of the measure as:

ψ =
1

(K − 1)K

K∑
k=1

K∑
m=1
m,k

D ( fk, fm). (3.3)

This definition makes it possible to distinguish unidirectional strong isolability from weak

isolability. If D ( fk, fm) = 1 ∨ D ( fm, fk) = 1 then the signature of the fault fk excludes the fault

fm or the signature of the fault fm excludes the fault fk . Therefore, according to Definition 3.1.2,

the faults are weakly isolable. Moreover, if D ( fk, fm) = 1 ∧ D ( fm, fk) = 1, then the signature

of the fault fk excludes the fault fm and the signature of the fault fm excludes the fault fk . Thus,

faults fk and fm are unidirectionally strongly isolable as defined in 3.1.3.

Example 3.2.1.

Let us analyze the example of BDM presented in Tab. 3.4. The results of the first step of

calculation (3.2) are presented in Tab. 3.5. The value of the measure of isolability, after

applying the formula (3.3), is equal to 0.82.

The value of the presented measure of isolability can be interpreted as a mean fraction of all

diagnoses that can be excluded, after the occurrence of a single fault. The measure of isolability

takes the maximal value when all pairs of faults are unidirectionally strongly isolable. In such a

case, each single fault signature excludes (K − 1) other faults (the fault does not exclude itself).

58



Table 3.4: Example of BMD.

f1 f2 f3 f4 f5 f6 f7 f8

s1 1 1 1 1

s2 1 1 1 1

s3 1 1 1 1

s4 1 1 1

s5 1 1

Table 3.5: Values of D ( fk, fm) for the example of BDM presented in Tab. 3.4.

f1 f2 f3 f4 f5 f6 f7 f8

f1 1 1 1 1

f2 1 1 1 1 1

f3 1 1 1 1 1

f4 1 1 1 1 1 1

f5 1 1 1 1 1 1 1

f6 1 1 1 1 1 1

f7 1 1 1 1 1 1

f8 1 1 1 1 1 1 1
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Then
∑K

k=1
∑K

m=1
m,k

D ( fk, fm) = (K − 1)K and the value of the measure of isolability is equal to
(K−1)K
(K−1)K = 1.

This formula ((3.2) and (3.3)) can be used for any approach to fault isolation that is based

on binary diagnostic signals. The only necessary requirement for using the proposed metric is

implementation of a method of determining whether a signature excludes other faults or not.

3.2.2 Multi-valued diagnostic signals

In the case of multi-valued diagnostic signals, the conditional isolability metric was proposed

in (Rostek 2016). The first step of calculation of the value of the proposed metric (3.2) needs

to be slightly modified in order to take into account conditional isolability. Instead of assigning

exclusively values 0 or 1 to each ordered pair of faults, the D ( fk, fm) can take any value from

the range [0, 1]. Let D ( fk, fm):

D ( fk, fm)=
card ({φ : φ ∈ Φ( fk) ∧ φ excludes fm})

card (Φ( fk))
, (3.4)

where: Φ( fk) is the set of all alternative signatures of the fault fk .

The formula (3.4) generalize the definition (3.2). It can be understood as a fraction of all

alternative signatures of fk that exclude fm. In the case of binary diagnostic signals, there is

always only one alternative signature φ( fk). The value of D ( fk, fm) is then equal to 0 or 1.

Consequently, in the case of binary diagnostic signals, the formula (3.4) is equivalent to (3.2).

Example 3.2.2.

An example of the FIS system is presented in Tab. 3.6. Results of the first step of calculation of

the measure of isolability for this FIS are shown in Tab. 3.7. The resulting value of the measure

of isolability ψ is equal to 1
(K−1)K

∑K
k=1

∑K
m=1
m,k

D ( fk, fm) = 2
3 .

3.2.3 Continuous diagnostic signals

In the case of continuous diagnostic signals, the definition of the measure of isolability is similar

to the definition for multi-valued diagnostic signals (3.4). The only difference is in calculation
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Table 3.6: Example of FIS.

f1 f2 f3 Vi

s1 −1 −1,+1 +1 −1, 0,+1

s2 0 0, 1 1, 2 0, 1, 2

s3 +1 +1 −1,+1 −1, 0,+1

Table 3.7: Values of D ( fk, fm) for the FIS presented in Tab. 3.6.

f1 f2 f3

f1 0 0 1

f2 3/4 0 2/4

f3 1 3/4 0

of the value D ( fk, fm). It can be defined as:

D ( fk, fm) =
volume of (Ω( fk) \Ω( fm))

volume of Ω( fk)
, (3.5)

where: Ω( fk) denotes the area in residual space characteristic to the fault fk .

Such a definition makes it possible to properly determine isolability as shown schematically

in Fig. 3.1. In this case, for faults f1 and f2, the values of both r1 and r2 are overlapping. When

r

r

f

f

1

2

1

2

Figure 3.1: Two faults isolable in residual space.
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analyzing only the values of single residuals, these faults are conditionally isolable. However,

these two faults are strongly isolable in residual space.

3.2.4 Sequences of symptoms

To calculate the measure of isolability for a diagnostic inference approach with sequential

symptoms, the binary diagnostic structure can be transformed into amulti-valued (FIS) structure.

The transformation procedure is as follows:

1. For each unique elementary sequence es j,p assign a new diagnostic signal.

2. For each fault, determine the set of values of this diagnostic signal:

• {0} – if both diagnostic signals in the elementary sequence es j,p are not sensitive to

this particular fault,
• {−1,+1} – if both diagnostic signals are sensitive to this particular fault, but the

order of appearance of symptoms of s j and sp is not determined,
• {−1} or {+1} – There are two cases:

(a) both diagnostic signals are sensitive to the given fault and the order of the

appearance of symptoms is determined. The values +1 and −1 can be applied

in any way. The only requirement is to apply them consequently. If for one

fault the sequence es j,p =< s j, sp > was assigned the value +1, then the same

sequence for other faults should also have assigned the value +1. Consequently,

the the value −1 should be assigned to the reversed sequence es j,p =< sp, s j >.

(b) only one diagnostic signal is sensitive to the given fault. The value +1 or −1

should be applied as if the sensitive signal was first in the sequence.

The resulting multi-valued structure has equivalent isolability properties to the original

structure with sequential symptoms. If exclusion properties of any pair of faults are identical

for both original and transformed diagnostic structures then the transformations proposed above

make it possible to properly reflect isolability properties of the original diagnostic structure

without the exoneration assumption. Fault fk excludes fault fm on the basis of sequences of

symptoms if es j,p( fk) , es j,p( fm), or if es j,p( fm) =< s j, sp > and only sp is sensitive to fk . After
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the transformation described above, the value of equivalent, multi-valued diagnostic signal is

different for both faults. Moreover, if an elementary symptom sequence is determined for

only one fault, e.g., es j,p( fk) =< s j, sp >, but both s j and sp are sensitive to fk and fm then

fm conditionally excludes fk . After the transformation, the values of the new, multi-valued

diagnostic signal are {+1} for fk and {−1,+1} for fm. In all these cases exclusion properties are

maintained after transformation.

Example 3.2.3.

Let us analyze the example of a diagnostic system presented in Tab. 3.8. In this example, there

are five faults and two diagnostic signals.

Table 3.8: Example of sequential residuals.

f1 f2 f3 f4 f5

s1 1 1 1 1

s2 1 1 1 1

es1,2 < s1, s2 > < s2, s1 > < s1,− > < s2,− >

It is not possible to isolate faults f1, f2 and f3 in this structure using only the values of

diagnostic signals. The value of the proposed measure of isolability for this BDM is ψ = 0.40.

However, from Tab. 3.8, elementary sequences of symptoms of two faults are known. For the

fault f1, the diagnostic signal s1 always appears before the signal s2. For the fault f2, the order

is reversed and the signal s2 appears before s1. For the other faults, the order of symptoms is

not determined.

To calculate the value of the metric of isolability a new diagnostic signal, s3, needs to be

added. The value +1 of the signal s3, corresponds to the elementary sequence es1,2 =< s1, s2 >.

Similarly, the value −1 corresponds to the elementary sequence es1,2 =< s2, s1 >. The FIS that

was derived with this method is presented in Tab. 3.9.

The faults f1 and f2 are unidirectionally strongly isolable, and D ( f1, f2) = D ( f2, f1) = 1.

Similarly, pairs of faults { f1, f5} and { f2, f4} are also unidirectionally strongly isolable. Pairs

{ f1, f3} and { f2, f3} are conditionally weakly isolable. Pairs { f1, f4}, { f1, f5}, { f3, f4}, and
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Table 3.9: FIS derived from the example of sequential residuals.

f1 f2 f3 f4 f5

s1 +1 +1 +1 +1

s2 +1 +1 +1 +1

s3 +1 −1 −1,+1 +1 −1

{ f3, f5} are unconditionally weakly isolable.

The value of themeasure of isolability of this FIS is equal toψ = 1
(K−1)K

∑K
k=1

∑K
m=1
m,k

D ( fk, fm) =

13
20 = 0.65. Consequently, for the original diagnostic system with sequential residuals, the value

of the measure of isolability is also equal to 0.65.

3.3 Properties of the proposed metric

3.3.1 Examples of elementary types of diagnostic structures

Unisolable diagnostic systems

Example 3.3.1.

An example of a diagnostic structure with three unisolable faults is presented in Tab. 3.10.

Table 3.10: Example of an unisolable diagnostic structure.

f1 f2 f3

s1 1 1 1

In this example, all faults are detectable, but no fault signature excludes any other fault. For

each pair of faults ( fk, fm) in this system D ( fk, fm) = 0. Therefore:

ψ =
1

(K−1)K

K∑
k=1

K∑
m=1
m,k

D ( fk, fm)= 0 (3.6)
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This result does not depend on K and ψ = 0 for any diagnostic system that is not able to isolate

faults.

Weakly isolating diagnostic structure

Example 3.3.2.

In Tab. 3.11 an example of a weakly isolable diagnostic structure is presented.

Table 3.11: Example of a weakly isolating diagnostic structure.

f1 f2 f3

s1 1 1 1

s2 1 1

s3 1

Each pair of faults is weakly isolable from others. Therefore, for each pair of faults

( fk, fm; k , m): D ( fk, fm) + D ( fm, fk) = 1. Then:

ψ =
1

(K−1)K

K∑
k=1

K∑
m=1
m,k

D ( fk, fm)=
1
2 (K−1)K
(K−1)K

=
1
2

(3.7)

Generally, the value of the isolability measure is equal to 1/2 for each diagnostic structure

in which each pair of faults is weakly isolable.

Unidirectionally strongly isolating diagnostic structure

Example 3.3.3.

An example of a unidirectionally strongly isolating diagnostic structure is presented in Tab. 3.12.

For each pair of faults in this structure both D ( fk, fm) = 1 and D ( fm, fk) = 1. Then:

ψ =
1

(K−1)K

K∑
k=1

K∑
m=1
m,k

D ( fk, fm)=
(K−1)K
(K−1)K

= 1. (3.8)

The proposed measure of isolability distinguishes between weak and unidirectional strong

isolability. In the case of the diagnosability degree that was discussed in Section 1.6.1, the
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Table 3.12: Example of a unidirectionally strongly isolating diagnostic structure.

f1 f2 f3

s1 1

s2 1

s3 1

diagnostic structures that are presented in Tables 3.11 and 3.12 have equal diagnosability

degrees.

3.4 Summary

In this chapter, the new metric of fault isolability was proposed. It meets the requirements for a

general metric of isolability.

This metric is useful for different types of diagnostic structures, including those based on

binary, multi-valued and continuous diagnostic signals. It can also be calculated for fault

isolation approaches based on using sequences of symptoms.

The metric is calculated based on using ordered pairs of faults. Therefore, it is sensitive

to whether fk is isolable from fm or fm is isolable from fk . Consequently, weak and strong

unidirectional isolability influence the value of the metric.

The proposed metric of isolability is also useful in formulation of linear optimal sensor

placement problems.

Metrics of fault isolability can be used in the design phase of a diagnostic system and as a

performance index in solving optimal sensor placement problems. In addition, the availability

of sensors changes during the operation of a industrial process, e.g., due to fault occurrences or

ongoingmaintenance. Metrics of fault isolability can be used in on-line monitoring in diagnostic

systems as an indicator of current fault isolation capabilities.
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Chapter 4

Comparison of isolability metrics

4.1 Introduction

In this chapter, the measure ψ of isolability proposed in this thesis will be compared with

metrics of isolability discussed in Chapter 1. The example of a two tank system, introduced

in Section 2.2.2, will be used to demonstrate their similarities and differences. Different types

of diagnostic signals will be analyzed. The impact of the exoneration assumption on values of

metrics of fault isolability will be also discussed.

4.2 Binary diagnostic matrix

Tab. 4.1 recalls the binary diagnostic matrix of the two tank system from Fig. 2.1. Only the

primary residuals are taken into account.

Table 4.1: BDM for the two tank system.

f1 f2 f3 f4 f5 f6 f7

s1 1 1 1 1 1

s2 1 1 1 1 1

s3 1 1 1 1 1 1
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4.2.1 Diagnosability degree

In order to calculate the diagnosability degree, faults should be divided into disjoint subsets of

unisolable faults called D-classes. The following D-classes can be determined from Tab. 4.1

and applying Definition 2.2.2: { f1}, { f2, f4}, { f3, f5}, { f6, f7}. Therefore, the diagnosability

degree is equal to 4
7 ≈ 0.57

4.2.2 Diagnosis accuracy

A calculation of diagnosis accuracy requires determination of possible diagnoses. The diagnosis

accuracy can be calculated for two cases.

1. With the exoneration assumption, there are four possible diagnoses: { f1}, { f2, f4}, { f3, f5},

and { f6, f7}. The diagnosis accuracy is then equal to: (74 )
−1 ≈ 0.57.

2. Without the exoneration assumption, there are also four diagnoses: { f1, f6, f7}, { f2, f4, f6, f7},

{ f3, f5, f6, f7}, and { f6, f7}. The diagnosis accuracy is equal to (13
4 )
−1 ≈ 0.31.

4.2.3 Isolability Index

To find the value of isolability index, pairs of isolable faults need to be determined. Isolability

index, similarly to diagnosis accuracy, can be calculated in two variants:

1. With the exoneration assumption, isolability index is equal to 36, because there are 36

ordered pairs of isolable faults. They are listed in Tab. 4.2a.

2. Without the exoneration assumption there are 26 such pairs. They are listed in Tab. 4.2b.

4.2.4 Measure of isolability

The first step of calculation of the measure of isolability is to determine values of D ( fk, fm).

The results are presented in Table 4.3. Afterwards, using these values, the value of the measure

of isolability is calculated: ψ = 1
(K−1)K

∑K
k=1

∑K
m=1
m,k

D ( fk, fm) = 26
42 ≈ 0.62.

This result means that after the occurrence of a single fault, on average 62% of all possible

faults are rejected from diagnosis.
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Table 4.2: Ordered pairs of faults that are isolable using BDM for the two tank system:

(a) with the exoneration assumption,

fk faults isolable from fk

f1 f2, f3, f4, f5, f6, f7

f2 f1, f3, f5, f6, f7

f3 f1, f2, f4, f6, f7

f4 f1, f3, f5, f6, f7

f5 f1, f2, f4, f6, f7

f6 f1, f2, f3, f4, f5

f7 f1, f2, f3, f4, f5

(b) without the exoneration assumption.

fk faults isolable from fk

f1 f2, f3, f4, f5

f2 f1, f3, f5

f3 f1, f2, f4

f4 f1, f3, f5

f5 f1, f2, f4

f6 f1, f2, f3, f4, f5

f7 f1, f2, f3, f4, f5

Table 4.3: Values D ( fk, fm) for the BDM for the two tank system.

f1 f2 f3 f4 f5 f6 f7

f1 1 1 1 1

f2 1 1 1

f3 1 1 1

f4 1 1 1

f5 1 1 1

f6 1 1 1 1 1

f7 1 1 1 1 1
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4.3 Fault Information System

Tab. 4.4 recalls FIS for the two tank system. The FIS uses multi-valued diagnostic signals.

Positive and negative values represent directions of the change of values of diagnostic signals.

Table 4.4: Example of the FIS for the two tank system.

f1 f2 f3 f4 f5 f6 f7

s1 +1 0 −1 0 −1,+1 −1,+1 −1,+1

s2 −1 +1 0 −1 0 −1,+1 −1,+1

s3 0 +1 −1 −1 −1,+1 −1,+1 −1,+1

4.3.1 Diagnosability degree and isolability index

In this example, some pairs of faults are only conditionally isolable, e.g., some alternative

signatures of the fault f6 exclude the fault f3, and some do not. Therefore, it is impossible to

divide faults into disjoint D-classes. Consequently, the diagnosability degree and isolability

index cannot be calculated.

4.3.2 Diagnosis accuracy

The diagnosis accuracy should once more be analyzed in two variants:

1. With the exoneration assumption, there are six possible diagnoses: { f1}, { f2}, { f3, f5},

{ f4}, { f5}, { f6, f7}. The diagnosis accuracy is equal to:
(

8
6

)−1
= 0.75.

2. Without the exoneration assumption, there are also six diagnoses: { f1, f6, f7}, { f2, f6, f7},

{ f3, f5, f6, f7}, { f4, f6, f7}, { f5, f6, f7}, { f6, f7}. The value of diagnostic accuracy is(
18
6

)−1
≈ 0.33

The diagnosis accuracy can be used with multi-valued diagnostic signals. However, the same

weights are given to all possible diagnoses. In the above example, three out of four alternative
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signatures of f5 are isolable from the fault f3. However, it is not reflected in the value of

diagnosis accuracy. Moreover, the diagnoses { f5} and { f3, f5} have the same weights.

4.3.3 Measure of isolability

The results of the first step of calculation of D ( fk, fm) are presented in Tab. 4.5. The measure

Table 4.5: The first step of calculation of the measure of isolability for the FIS for the two tank system.

f1 f2 f3 f4 f5 f6 f7

f1 1 1 1 1

f2 1 1 1 1

f3 1 1 1

f4 1 1 1 1

f5 1 1 3/4 1

f6 1 1 1 1 1

f7 1 1 1 1 1

of isolability for this system ψ is equal to 28.75
42 ≈ 0.685. This indicates that the FIS structure

has better isolating properties than the BDM structure.

4.4 Sequential residuals and BDM

Measures of isolability are applicable for diagnostic systems which make use of the knowledge

of sequences of symptoms. For the example of the two tank system, the sequencesof symptoms

are presented in Tab. 4.6.

4.4.1 Diagnosability degree

In case of sequences of symptoms, faults may be conditionally isolable, regardless of the type

of diagnostic signals. Generally, diagnosability degree and isolability index are not suitable

for this class of diagnostic systems. However, in the studied example, there is no conditionally
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Table 4.6: Sequences of symptoms for the two tank system.

f1 f2 f3 f4 f5 f6 f7

s1 1 − 1 − 1 1 1

s2 1 1 − 1 − 1 1

s3 − 1 1 1 1 1 1

es1,2 < s1, s2 > < s1, s2 > < s2, s1 >

es1,3 < s1, s3 > < s1, s3 > < s1, s3 > < s3, s1 >

isolable pair of faults. There are five D-classes of faults: { f1}, { f2, f4}, { f3, f5}, { f6}, { f7}. The

diagnosability degree is equal to 5
7 ≈ 0.71.

4.4.2 Diagnosis accuracy

1. With the exoneration assumption, there are five possible diagnoses after the occurrence

of a single fault: { f1}, { f2, f4}, { f3, f5}, { f6}, { f7}. The value of this measure is:(
7
5

)−1
≈ 0.71.

2. Without the exoneration assumption, diagnoses are: { f1, f6}, { f2, f4, f7}, { f3, f5, f6}, { f6},

{ f7}. The diagnosis accuracy is equal to:
(

10
5

)−1
= 0.5.

4.4.3 Isolability index

The ordered pairs of isolable faults used in calculation of the isolability index are listed in

Tab. 4.7. The value of the isolability index is equal to 38 with the exoneration assumption.

Without this assumption, the index is equal to 33.

4.4.4 Measure of isolability

In order to calculate the measure of isolability, the method presented in Section 3.2.4 should

be used. The sequences of symptoms es1,2 and es1,3 from Tab. 4.6 are replaced with multi-

valued diagnostic signals s1,2 and s1,3 respectively. Tab. 4.8 combines both the original binary
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Table 4.7: Ordered pairs of faults that are isolable using the BDM and sequences of symptoms for the

two tank system.

(a) With the exoneration assumption.

fk faults isolable from fk

f1 f2, f3, f4, f5, f6, f7

f2 f1, f3, f5, f6, f7

f3 f1, f2, f4, f6, f7

f4 f1, f3, f5, f6, f7

f5 f1, f2, f4, f6, f7

f6 f1, f2, f3, f4, f5, f7

f7 f1, f2, f3, f4, f5, f6

(b) Without the exoneration assumption.

fk faults isolable from fk

f1 f2, f3, f4, f5, f7

f2 f1, f3, f5, f6

f3 f1, f2, f4, f7

f4 f1, f3, f5, f6

f5 f1, f2, f4, f7

f6 f1, f2, f3, f4, f5, f7

f7 f1, f2, f3, f4, f5, f6

diagnostic signals and the new multi-valued signals.

Table 4.8: BDM for the two tank system with multi-valued diagnostic signals obtained from known

sequences of symptoms.

f1 f2 f3 f4 f5 f6 f7

s1 1 − 1 − 1 1 1

s2 1 1 − 1 − 1 1

s3 − 1 1 1 1 1 1

s1,2 +1 −1 +1 −1 +1 +1 −1

s1,3 +1 −1 +1 −1 +1 +1 −1

Results of the first step of calculation are presented in Tab. 4.9. The measure of isolability

can be calculated using information from Tab. 4.9:

ψ =
1

(K−1)K

K∑
k=1

K∑
m=1
m,k

D ( fk, fm) =
33
42
≈ 0.79.
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Table 4.9: Values of D ( fk, fm) for sequential residuals and the BDM for the two tank system.

f1 f2 f3 f4 f5 f6 f7

f1 1 1 1 1 1

f2 1 1 1 1

f3 1 1 1 1

f4 1 1 1 1

f5 1 1 1 1

f6 1 1 1 1 1 1

f7 1 1 1 1 1 1

4.5 Sequential residuals and FIS

for isolation purposes, the sequences of symptoms can be also combined with multi-valued

diagnostic signals. Tab. 4.10 presents such a structure on the example of the two tank system.

Similarly to the previous example, the elementary sequences of symptoms were replaced with

multi-valued diagnostic signals.

Table 4.10: FIS of the two tank system with information about sequences of symptoms.

f1 f2 f3 f4 f5 f6 f7

s1 +1 0 −1 0 −1,+1 −1,+1 −1,+1

s2 −1 +1 0 −1 0 −1,+1 −1,+1

s3 0 +1 −1 −1 −1,+1 −1,+1 −1,+1

s1,2 +1 −1 +1 −1 +1 +1 −1

s1,3 +1 −1 +1 −1 +1 +1 −1
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4.5.1 Diagnosability degree and isolability index

The diagnosability degree and isolability index cannot be calculated because some faults are

conditionally isolable.

4.5.2 Diagnosis accuracy

1. With the exoneration assumption, there are seven diagnoses: { f1}, { f2}, { f3, f5}, { f4},

{ f5}, { f6}, { f7}. The value of the diagnosis accuracy is equal to:
(

8
7

)−1
= 0.875

2. Without the exoneration assumption, there are the following diagnoses: { f1, f6}, { f2, f7},

{ f3, f5, f6}, { f4, f7}, { f5, f6}, { f6}, { f7}, and the diagnosis accuracy is
(

13
7

)−1
≈ 0.54

4.5.3 Measure of isolability

Tab. 4.11 lists the values of D ( fk, fm) needed for calculation of the measure of isolability. Using

Table 4.11: Values of D ( fk, fm) for sequential residuals and the FIS for the two tank system.

f1 f2 f3 f4 f5 f6 f7

f1 1 1 1 1 1

f2 1 1 1 1 1

f3 1 1 1 1

f4 1 1 1 1 1

f5 1 1 3/4 1 1

f6 1 1 1 1 1 1

f7 1 1 1 1 1 1

Tab. 4.11, the value of the measure of isolability ψ can be calculated from Tab. 4.11:

ψ =
1

(K−1)K

K∑
k=1

K∑
m=1
m,k

D ( fk, fm) =
35.75

42
≈ 0.85.
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4.6 Comparison and summary

Tab. 4.12 summarizes the values of differentmetrics of isolability for different types of diagnostic

signals in case of the two tank system.

Table 4.12: Comparison of different metrics of isolability.

Sequential residuals:

BDM FIS + BDM + FIS

Diagnosability degree 0.57 − 0.71 −

Diagnosis accuracy with exoneration 0.57 0.75 0.71 0.875

Diagnosis accuracy without exoneration 0.31 0.33 0.5 0.54

Isolability index with exoneration 36 − 38 −

Isolability index without exoneration 26 − 33 −

Measure of isolability ψ 0.62 0.685 0.79 0.85

Values of differentmeasures of isolability have different interpretations and cannot be directly

compared with each other.

It is interesting to notice that, for the diagnosis accuracy with the exoneration assumption,

the value of the metric for FIS is greater than for BDM with sequential residuals. Without

this assumption, BDM with sequential residuals has a higher score. Therefore, when using

the diagnosis accuracy during the design of a diagnostic system, it should be carefully ana-

lyzed whether the exoneration assumption is appropriate, because it can significantly affect the

designing process. The exoneration assumption was thoroughly analyzed in Section 3.1.1.

In all studied cases, FIS with sequential residuals is the diagnostic structure with the best

isolability properties. It shows that it is very beneficial to extend binary diagnostic signals and

introduce a multi-valued evaluation of residuals and the sequences of symptoms.

It is not possible to differentiate between weak and unidirectional strong isolability using the

diagnosability degree. All other metrics include this information.

Only diagnosis accuracy and the proposedmeasure of isolability can be used for multi-valued
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diagnostic signals and sequences of symptoms. However, the calculation of diagnosis accuracy

requires additional assumptions, e.g., with or without the exoneration assumption, or whether or

not diagnoses caused bymultiple faults are included. Moreover, in case of conditional isolability,

diagnosis accuracy considers both possibilities (isolable or unisolable) with the same weight,

regardless of the actual distribution of alternative signatures into these two categories.

The isolability index and the new measure of isolability make it possible to formulate the

optimal sensor placement problem as a binary integer linear programming problem, which can

be efficiently solved using existing solvers.
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Chapter 5

Optimal sensor placement problem

5.1 Introduction

Using the proposed measure of isolability (3.3), it is possible to construct an optimization

problem for searching for the set of sensors providing the best isolability:

maximize
x

1
(K − 1)K

K∑
k=1

K∑
m=1
m,k

D( fk, fm),

xi ∈ {0, 1}

(5.1)

where: xi is a decision variable and xi = 1 when the ith sensor is chosen. If the set of faults

is constant, then the normalization factor 1
(K−1)K does not change the results of optimization.

Consequently, this normalization only needs to be used when new faults, related to new sensors,

are considered. However, then the optimal sensor placement problem becomes much more

difficult to solve. Therefore, in this chapter, a constant number of faults is assumed.

5.2 Problem formulation for BDM

In this section, only binary diagnostic signals are analyzed. If a fault fk is unisolable from fm,

then D( fk, fm) is equal to 0. Otherwise, it is equal to 1. The value of D( fk, fm) can be calculated
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in the following way:

xDk,m
= D( fk, fm) = max

xsj

{
xsj : v j,k , 0 ∧ v j,m = 0

}
. (5.2)

This formula states that D( fk, fm) is equal to 1 if at least one diagnostic signal s j is sensitive to

the fault fk and not sensitive to the fault fm. The shorthand notation xDk,m
will be used instead

of D( fk, fm) as a variable in the description of an optimal sensor placement problem.

Similarly, the variable xsj can be expressed as:

0 ≤ xsj ≤ min
xi

{
xi : xi is necessary to calculate s j

}
, (5.3)

where: xi is the decision variable, which indicates that ith sensor is available, as in the original

problem formulation (5.1). If even one of the sensors necessary for the diagnostic signal s j is

unavailable, then this signal cannot be used. The inequality relation ≤ is used, because, even if

all required sensors are available, the diagnostic signal may be not of interest, e.g., due to too

high cost of development of necessary models.

Example 5.2.1.

In Tab. 5.1 an example of a simple BDM is presented. There are three faults and three diagnostic

signals. Each diagnostic signal requires two sensors to be available.

Table 5.1: Simple BDM and sensor requirements for diagnostic signals.

f1 f2 f3

s1(x1, x2) 1 1 1

s2(x1, x3) 1 1

s3(x2, x3) 1
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The following equations can be constructed:

xs1 ≤ min{x1, x2},

xs2 ≤ min{x1, x3},

xs3 ≤ min{x2, x3},

xD2,1 = D( f2, f1) = max{xs2} = xs2,

xD3,1 = D( f3, f1) = max{xs2, xs3},

xD3,2 = D( f3, f2) = max{xs3} = xs3,

xs1, xs2, xs3 ≥ 0,

xi, ssj ∈ {0, 1}, i, j = 1 . . . 3.

(5.4)

The pairs of faults for which D( fk, fm) = 0 were omitted.

The objective function maximize
x

1
6
∑K

k=1
∑K

m=1
m,k

xDk,m
with constraints (5.4) is a difficult, con-

strained, non-linear optimisation problem.

5.2.1 Additional constraints

Fault detectability

Generally, it is not possible to determine which faults will be detectable before solving the basic

optimal sensor placement problem (5.1). In practice, detectability of the most important faults

is often required. In a special case, this requirement can refer to all faults.

The detectability of a given fault can be interpreted as the possibility to distinguish this fault

from the state without faults. To satisfy detectability requirements, an additional constraint can

be added to (5.1) in the following way:

D( fk, faultless state) = max
xsj

{
xsj : v j,k , 0

}
= 1. (5.5)

This ensures that there is at least one signal sensitive to fault fk .

If the problem with this additional constraint becomes infeasible, then it is impossible to

meet the detectability requirements.
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Example 5.2.2.

The detectability requirements for the problem introduced in Example 5.2.1 can be formulated

in the following way:
f1 : max{xs1} = xs1 = 1,

f2 : max{xs1, xs2} = 1,

f3 : max{xs1, xs2, xs3} = 1.

(5.6)

Isolability constraints

For some critical subset of faults it may be beneficial to require the solution of the optimal sensor

placement problem to isolate these faults. These requirements can be fulfilled by introducing

additional equality constraints. For example, if it is important that a fault fk is isolable from a

fault fm, then the following constraint should be added:

xDk,m
= 1. (5.7)

If unidirectional strong isolability is desired, then two constraints should be added:

xDk,m
= 1,

xDm,k
= 1.

(5.8)

If the isolability requirements cannot be satisfied, then the constrained problem will be

infeasible.

Example 5.2.3.

For the diagnostic system introduced in Example 5.2.1, it is required that the fault f3 is isolable

from both f1 and f2. Then the following constraints should be added:

xD3,1 = 1,

xD3,2 = 1.
(5.9)

Budgetary constraints

The costs of implementation of a diagnostic system need to be taken into consideration when

dealing with a real implementation. These costs include:
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• investments costs – new equipment, its installation, and commissioning, e.g., sensors,

communication modules etc.,

• development costs of the diagnostic system, e.g., designing and identification of models,

necessary experiments etc.

Typically, there are some budgetary limits. These limits reduces the set of affordable solutions

of the optimal sensor placement problem. Some solutions with better isolability might be too

expensive for implementation.

A budgetary constraint of an optimization problem can be expressed by:

cT x ≤ b, (5.10)

where: c is the cost vector, x is the vector of decision variables for sensors and diagnostic

signals, and b is the available budget.

The total cost of implementation of a diagnostic system can be used as a secondary objective

function in the case where multiple solutions provide identical isolability. This can be realized

by solving a modified optimization problem where objective function

maximize
x

1
(K − 1)K

K∑
k=1

K∑
m=1
m,k

xDk,m
, (5.11)

is replaced with

minimize
x

cT x. (5.12)

To retain isolability properties, the following constraint should be added:

1
(K − 1)K

K∑
k=1

K∑
m=1
m,k

xDk,m
≥ G, (5.13)

where G is the desired value of the isolability measure.

The cost of a diagnostic system can also be understood as the number of new sensors to be

installed.

Example 5.2.4.

Tab. 5.2 presents an example of costs of sensors and diagnostic signals considered in Exam-

ple 5.2.1.
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Table 5.2: Costs of sensors and implementation of diagnostic signals for the simple example.

x1 x2 x3 s1 s2 s3

1 2 3 4 2 3

The budgetary constraint has the following form:

[
1 2 3 4 2 3

]


x1

x2

x3

s1

s2

s3


≤ b. (5.14)

5.3 Problem formulation for FIS

In the case of FIS, the calculation of D( fk, fm) according to the formula (5.2) is insufficient.

For a given fault, there are possible multiple alternative signatures with different isolability

properties. This results in conditional isolability. The set of diagnostic signals sensitive to

a fault fk and excluding fm depends on alternative signatures of the fault fk . The formula

(3.4) should be expressed in terms of decision variables xsj in order to use D( fk, fm) for the

multi-valued diagnostic signal:

xDk,m
=

1
card (Φ ( fk))

∑
φ∈Φ( fk )

max
{

xsj : s j (φ) , 0 ∧ s j (φ) < s j ( fm)
}
, (5.15)

where: Φ ( fk) is the set of alternative signatures of fk , s j (φ) is the value of s j for the alternative

signature φ, and s j ( fm) is the set of possible values of s j for the fault fm. In the case of

multi-valued diagnostic signals, xDk,m
is not binary.

Example 5.3.1.

In Tab. 5.3 an example of a simple FIS is presented.
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Table 5.3: Simple FIS with two faults and two diagnostic signals.

f1 f2

s1 −1,+1 −1

s2 −1,+1 −1

The xD2,1 = 0 because the signature of the fault f2 does not exclude the fault f1. For the fault

f1 there are four alternative signatures:

• [−1,−1]T – does not exclude f2,

• [+1,−1]T – excludes f2 if s1 is available,

• [−1,+1]T – excludes f2 if s2 is available,

• [+1,+1]T – excludes f2 if any diagnostic signal is available.

Therefore, the optimisation problem for this system can be formulated in the following way:

maximize
x

1
2

(
xD1,2 + xD2,1

)
,

s.t. xD1,2 =
1
4

(
max

{
xs1

}
+ max

{
xs2

}
+ max

{
xs1, xs2

})
,

xD2,1 = 0,

xs1, xs2 ∈ {0, 1}.

(5.16)

For simplicity, sensor constraints were omitted in this example.

If both xs1 and xs2 are available then xD1,2 is equal to 3
4 . If only one diagnostic signal is

available then xD1,2 is equal to 1
2 , and if neither of them is available then xD1,2 = 0.

Multi-valued diagnostic signals that were obtained from sequences of symptoms (Sec-

tion 3.2.4) instead of sensors should require diagnostic signals that are used to calculate their

values. For example, if s3 is calculated using the order of appearance of symptoms of s1 and s2,

then xs3 = min{xs1, xs2}.
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5.4 Problem linearization

The original problem (5.1) with constraints (5.4) is non-linear. There are techniques that will

allow us to solve this problem easily, by constructing an equivalent, higher dimensional, linear

optimisation problem. To simplify non-linear constraints, two corollaries will be exploited:

Corollary 5.4.1.

The problem maximize
x

min{x1, . . . , xk} has the same optimal solution as linear, constrained

problem (Boyd and Vandenberghe 2004):

maximize
x

xk+1,

s.t. xk+1 ≤ x1,

...

xk+1 ≤ xk .

(5.17)

The solution of (5.17) is the biggest lower bound (infimum) of a set {x1, . . . , xk}. For finite

sets it is always equal to minimum, which is the solution of the original problem.

Corollary 5.4.2.

Binary Integer Linear Programming BILP problem maximize
x

max{x1, . . . , xk} s.t.xi ∈ {0, 1}

has the same optimal solution as:

maximize
x

min{x1 + x2 + · · · + xk, 1}

s.t. xi ∈ {0, 1}.
(5.18)

When xi is binary, i.e. xi ∈ {0, 1}, max{x1, . . . , xk} = 0 iff x1 = x2 = · · · = xk = 0. In such a

case x1 + x2 + · · ·+ xk = 0. Otherwise, x1 + x2 + · · ·+ xk ≥ 1 and min{x1 + x2 + · · ·+ xk, 1} = 1.

Corollary 5.4.1 makes it possible to linearize requirements of sensors for diagnostic signals.

Corollary 5.4.2 followed by 5.4.1 can be used to formulate a linear equivalent of the calculation

of xDk,m
. Using Corollaries 5.4.1 and 5.4.2 it is possible to construct a higher dimensional, linear

equivalent of (5.4) by substituting min and max functions with new, constrained variables. Some

of the new equality constraints that result from Corollary 5.4.2 may be repeated multiple times.
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Duplicates of constraints should be removed to reduce the number of constraints in the final

problem.

If multi-valued diagnostic signals are used, then xDk,m
may be not binary and the optimization

problem becomes Mixed Integer Linear Programming MILP, which is a generalization of BILP.

These substitutions can be easily automated and used in a tool that builds a BILP (or MILP)

problem using only BDM (or FIS) and a list of sensor requirements as inputs.

Example 5.4.1.

Using techniques presented in this section, the example presented in (5.4) can be transformed

into a BILP problem. In this example, there is no need to introduce new control variables. The

following BILP problem can be directly obtained:

maximize
x

1
6

K∑
k=1

K∑
m=1
m,k

xDk,m

s.t. cT x ≤ b,

xs1 ≤ x1,

xs1 ≤ x2,

xs2 ≤ x1,

xs2 ≤ x3,

xs3 ≤ x2,

xs3 ≤ x3,

xD2,1 = xs2,

xD3,1 ≤ xs2 + xs3,

xD3,2 = xs3,

xs1, xs2, xs3 ≥ 0,

xD3,1 ∈ {0, 1},

xi, xsj ∈ {0, 1}, i, j = 1 . . . 3.

(5.19)
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5.5 Solving ILP problem with the branch-and-bound

algorithm

An Integer Linear Programming ILP problem can be solved using a family of methods called

branch-and-bound. These methods work by analyzing the lower or upper bounds of subsets

(branches) of possible solutions. If these bounds indicate that the analyzed subset cannot

contain a better solution than the current best, then the whole subset is discarded (bounding).

An example of the branch-and-bound method developed for the purpose of this thesis is

presented as Algorithm 1.

In order to solve the original problem this algorithm solves a series of relaxed LP problems.

A constraint x ∈ {0, 1} is replaced with 0 ≤ x ≤ 1. In Algorithm 1, constraints are represented

as four matrices A, B, Aeq, Beq: Ax ≤ B for inequality constraints and Aeqx = Beq for equality

constraints. If a solution of a relaxed problem is not feasible, i.e., some integer variable xi is not

an integer, then two new LP problems (nodes) are created. One of the nodes has the constraint

xi = 0 and the other xi = 1. Both problems are added to the node queue. This operation is called

branching. Usually, there is more than one infeasible (non-integer) variable. There are many

heuristics focused on choosing on which one to branch. In the Algorithm 1 the most infeasible

variable is chosen. Variable feasibility is calculated as abs(0.5− x). The variable closest to 0.5

is the most infeasible.

The algorithm retains the current best integer solution. The solution to a relaxed problem

is always equal or better than the solution to the original problem. Therefore, if the optimal

solution to the relaxed problem is worse than the current best, then such node is discarded. A

node is also discarded if, after branching, the relaxed LP problem is no longer feasible. These

operations are called bounding.

Algorithm 1 considers one more case. C(x) is the total cost of solution x. If the solution

for the current node is an integer and it has an equal value of the objective function as the best

solution, then total costs are compared and the cheaper solution is selected. This ensures that

the cheapest solution offering optimal isolability is always selected.
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Algorithm 1 x = branchAndBound( f , A, b, Aeq, beq, xb)
if relaxed problem is infeasible then return 0

end if

x← solveLP(f,A,b,Aeq,beq)

if f T x < f T xb then return 0 . Bounding

else

if isInteger(x) then

if f T x = f T xb then

if C(x) < C(xB) then return x

else

return 0

end if

else

return x

end if

else . Branching

i ← chooseInfisible(x)

[Aeq1Beq1] ← addConstraint(0, i, Aeq, beq)

[Aeq2Beq2] ← addConstraint(1, i, Aeq, beq)

x1 ← branchAndBound( f , A, b, Aeq1, beq1, xB)

if f T x1 ≥ f T xB then xB ← x1

end if

x2 ← branchAndBound( f , A, b, Aeq2, beq2, xB)

if f T x2 ≥ f T xB then xB ← x2

end if

return xB

end if

end if
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5.6 Optimal sensor placement problem for an

electro–pneumatic actuator

To demonstrate an example of the optimal sensor placement formulation, an electro–pneumatic

valve actuator will be discussed. Fig. 5.1 illustrates the actuator (Bartyś 2016a). It consists

SP CV CVI

PVX X

Ps

F

Pz

PVP

Electronic controller

Air pressure
sensor

E/P

Air supply system

Control valvePositioner feedback
Pneumatic

servo-motor

f1

f2f3

f4

f5

f6

Figure 5.1: Causal graph of the electro-pneumatic actuator (Bartyś 2016a). SP – set point, CV –

control value, CVI – control value of the electro-pneumatic transducer, PVP – pressure measurement in

servo–motor chamber, PVX – stem displacement, F – flow rate.

of an electronic controller, an electro–pneumatic converter, a servo–motor, a control valve,

and an electro–mechanical stem position feedback. The list of available measurements include

the control value CV, the control value of the electro–pneumatic transducer CVI, the stem

displacement measurement X, and the pressure in the chamber of the servo–motor. Tab. 5.4 lists

the considered faults. Tab. 5.5 specifies the considered binary diagnostic matrix.

Using Tab. 5.5, the maximum value of the metric of isolability ψ can be calculated as:

ψ =
1

(K − 1)K

∑K

k=1

∑K
m=1
m,k

D ( fk, fm) =
9
30
= 0.3. (5.20)

To find the diagnostic structure with ψ = 0.3 and the minimum number of required sensors the

optimal sensor placement problem should be formulated as (5.21).
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Table 5.4: List of actuator faults.

Fault Faulty component

f1 E/P transducer

f2 Pneumatic servomotor

f3 Position feedback

f4 Pressure sensor fault

f5 Supply air pressure

f6 Control valve

Table 5.5: List of considered diagnostic signals for the electro–pneumatic actuator.

Signal Residual f1 f2 f3 f4 f5 f6

s1 X − f (CV) 1 1 1 1 1

s2 X − f (CV I) 1 1 1 1 1

s3 X − f (Ps) 1 1 1 1

s4 Ps − f (CV) 1 1 1 1 1 1

s5 Ps − f (CV I) 1 1 1 1 1 1
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minimize
x

xCV + xCV I + xPs + xX

s.t.
1
30

K∑
k=1

K∑
m=1
m,k

xDk,m
= 0.3,

xs1 ≤ xX,

xs1 ≤ xCV,

xs2 ≤ xX,

xs2 ≤ xCV I,

xs3 ≤ xX,

xs3 ≤ xPs,

xs4 ≤ xPs,

xs4 ≤ xCV,

xs5 ≤ xPs,

xs5 ≤ xCV I, (5.21)

xD2,1 ≤ xs3,

xD3,1 ≤ xs3,

xD5,1 ≤ xs3,

xD6,1 ≤ xs3,

xD1,4 ≤ xs1 + xs2,

xD2,4 ≤ xs1 + xs2 + xs3,

xD3,4 ≤ xs1 + xs2 + xs3,

xD5,4 ≤ xs1 + xs2 + xs3,

xD6,4 ≤ xs1 + xs2 + xs3,

xCV, xCV I, xX, xPs, xsj,xDk,m
∈ {0, 1}, k,m = 1 . . . 6, j = 1 . . . 5.
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To ensure that all faults are detectable the following constraints should be added:

f1 : xs1 + xs2 + xs4 + xs5 ≥ 1,

f2 : xs1 + xs2 + xs3 + xs4 + xs5 ≥ 1,

f3 : xs1 + xs2 + xs3 + xs4 + xs5 ≥ 1,

f4 : xs4 + xs5 ≥ 1,

f5 : xs1 + xs2 + xs3 + xs4 + xs5 ≥ 1,

f6 : xs1 + xs2 + xs3 + xs4 + xs5 ≥ 1.

(5.22)

The problem (5.21) with (5.22) was solved using a Coin–or branch–and–cut (Cbc) solver and

a PuLPmodeler. The following solutionwas returned by the solver: xCV = 1.0, xCV I = 0.0, xPs =

1.0, xX = 1.0. Consequently, the optimal sensor set for given constraints is {CV, Ps, X} and the

resulting BDM is presented in Tab. 5.6.

Table 5.6: Optimal BDM for the electro–pneumatic actuator.

f1 f2 f3 f4 f5 f6

s1 1 1 1 1 1

s3 1 1 1 1

s4 1 1 1 1 1 1

In Tab. 5.7 the values of different metrics of isolability for the resulting BDM are presented.

5.7 Binary optimal sensor placement problem with

budgetary constraints for Fuel Cell Stack System

The Fuel Cell Stack System will be used as an example of an optimal sensor placement problem.

Fuel cells are electrochemical devices that convert chemical energy from a gas fuel into electric-

ity. In this example PEMFC (Polymer Electrolyte Membrane Fuel Cell) is analysed. Hydrogen

is supplied to an anode and oxygen to a cathode. As a result of a chemical reaction, water
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Table 5.7: Values of metrics of isolability for the electro–pneumatic actuator.

Metric Value

Diagnosability degree 0.5

Diagnosis accuracy with exoneration 0.5

Diagnosis accuracy without exoneration 0.2

Isolability index with exoneration 18

Isolability index without exoneration 9

Measure of isolability ψ 0.3

and electric energy are produced. A detailed description was given in (Pukrushpan 2003). In

(Sarrate et al. 2012a) a simplified structural was presented. Variables used in this example are

shown in Tab. 5.8. In the same paper, approximate sensor costs were proposed. The considered

faults are listed in Tab. 5.9.

The method of optimal sensor placement discussed in this chapter requires information

about possible diagnostic signals and new sensors required. One way to obtain the information

is to make use of expert knowledge. There is also work on automatic generation of diagnostic

structures. The model structures and BDM, which are summarized in Tables 5.10 and 5.11

respectively, were obtained by means of the casual graph method presented in (Sztyber et al.

2015; Sztyber 2017). SN0 denotes that any of following sensors can be used: pca, Wcp, Wsm,out ,

ωcp, psm. Some of these signals require sensors that are already installed. To handle this case,

the already measured values were added to the optimization problem with costs equal to 0.

Using the method presented in the previous section, the BILP problem was derived from Ta-

bles 5.10 and 5.11. The obtained linear problem has 59 variables and 132 inequality constraints.

There are 259 possible solutions.

To solve this problem, Algorithm 1was used. It was implemented in theMatlab environment.

A standard simplex solver was used to solve LP problems. Other, more advanced solvers can

also be used, e.g., branch-and-cut.

The optimal values of the isolabilitymeasure for different budgetary constraints are presented

in Fig. 5.2. The total cost of the best performing FDI system is 7. A further increase of the budget
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Table 5.8: Model variables.

Control variables, already measured

Vcm Compressor voltage

Wcp Air flow through the compressor

Ist Stack current

Vst Stack voltage

Unmeasurable variables

τcm Compressor motor torque

τcp Load torque

Wv,in j Humidifier injector flow

Possible sensor locations Costs

ωcp Compressor angular speed 2

psm Supply manifold pressure 1

Wsm,out Supply manifold exit flow 5

pca Cathode pressure 1

Wca,out Cathode output flow 5

pan Anode pressure 1

Wan,in Anode input flow 5

Wrm,out Return manifold exit flow 5
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Table 5.9: Fuel Cell Stack System faults.

Description

fpsm Compressor fault

fWsm,out Supply manifold fault

fWrm,out Return manifold faul

fIst Fuel Cell Stack fault

fn Cell fault

Table 5.10: Proposedmodels for diagnostic sig-

nals.

output inputs

1 Wrm,out Vcm,Ist

2 Wrm,out Ist ,SN0

3 pan Ist

4 pca Wcp

5 pca Vcm

6 Wcp Vcm

7 Wcp pca,Vcm

8 Vst pan,Ist ,SN0

9 Vst pan,Vcm,Ist

10 Vst Vcm,Ist

11 Vst Ist ,SN0

Table 5.11: BDM for the Fuel Cell Stack Sys-

tem.

fpsm fWsm,out fWrm,out fIst fn

s1 1 1 1

s2 1

s3 1

s4 1

s5 1 1

s6 1 1 1

s7 1 1

s8 1

s9 1 1 1

s10 1 1 1 1

s11 1 1
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does not improve isolability (Tab. 5.3). The number of nodes created by the branch-and-bound

algorithm is shown in Fig. 5.4. It is worth noticing that even in the worst case the total number

of nodes was much smaller than theoretical 259 or even 28 (where 8 is the number of new sensors

that can be installed).
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Figure 5.2: Value of the isolability metric of optimal solutions for different budget values.
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Figure 5.3: Total costs of new sensors of optimal solutions for different budget values.

The obtained results can be compared to those from (Sarrate et al. 2012a). There, the optimal

solution obtained with three different methods was S∗ = {pca, pan} with the total cost C(S∗) = 2.

This is the same result as obtained in this Section with budgetary constraint 2 ≤ B < 6. In

Fig. 5.2 one can see that it is possible to improve the value of the isolability metric. It is because

additional measurements make some weakly isolating pairs of faults strongly isolating. With
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Figure 5.4: Number of nodes created to find optimal solutions for different budget values.

budget B = 6 sensors {pan,Wrm,out} are chosen andwith budget B ≥ 7 sensors {pca, pan,Wrm,out}.

The obtained results depend on a set of new model structures that are considered during the

optimization procedure. If this set is incomplete, then results may not be optimal.

5.8 Comparison of optimal sensor placement problems with

different metrics of isolability

In this section, the results of an optimal sensor placement problem obtained with the proposed

metric of isolability are compared with results obtained with other metrics. Both binary and

multi-valued versions of a problem are compared. The computational complexity of different

approaches is also analyzed. As an example the Three Tank System is used. It is a popular

diagnostic benchmark with a well documented analytic description.

5.8.1 Formulation of Optimization Problem

The optimal sensor set is determined by the following requirements:

1. The preferred solution makes it possible to detect all faults, i.e., for each fault there should

be at least one diagnostic signal sensitive to this fault.

2. If many solutions offer the same detectability, the solution with higher isolability metric

is chosen.
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3. If there are many solutions with the same detectability and isolability, the cheapest one is

selected.

The optimization problem was solved with the branch-and-bound algorithm (Sarrate et al.

2012b). For some isolability metrics it was impossible to use Algorithm 1, because problems

were non-linear. Therefore, a much simpler branch-and-bound algorithm was applied. A simple

heuristic was used for determining the upper isolability limit. It estimates maximum isolability

of a branch by relaxing the budgetary constraint and choosing all sensors that are not excluded.

A discrete decision variable was defined for each sensor with three possible values: positive,

negative and unknown. The upper bound of the currently analyzed solution is compared to the

current best solution according to the criteria given above.

5.8.2 Three Tank System example

The proposed analysis was performed on the example of a FIS for a system of three tanks (TTS)

depicted in Fig. 5.5. Sixteen faults were considered (Tab. 5.12). Seven new sensor locations

with cost estimation are proposed in Tab. 5.13. The cost of CVv is 0, because this signal is

already available in the diagnosed system.

By using the method presented in (Sztyber et al. 2015), 25 possible diagnostic signals were

generated, using sensors listed in Tab. 5.13. Tri-valued diagnostic signals were considered. All

budget values lower or equal to the total cost of all proposed sensors were analyzed.

5.8.3 Results of the comparison

Two main cases were compared. In the first one, BDMwas used. It was obtained from Tab. 5.14

by replacing non-zero values with 1. In the second case, three-valued diagnostic signals were

used as presented in Tab. 5.14. In each case, the optimization process was repeated for each

appropriate isolability metric and for each budget value. The optimization results from the

first case are presented in Tab. 5.16. Similarly, the results of the second case are presented in

Tab. 5.15. The optimal sensor set is presented with the corresponding value of the metric for

each combination of metrics and available budgets.
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Table 5.12: Considered faults.

Fault Description

f1 measurement chain FI102 fault

f2 measurement chain LI103 fault

f3 measurement chain LI104 fault

f4 measurement chain LIC105 fault

f5 measurement chain XI101 fault

f6 control signal fault

f7 valve actuator fault

f8 valve fault

f9 pump fault

f10 low water level fault

f11 clogging between tanks T1 and T2

f12 clogging between tanks T2 and T3

f13 clogged outflow from tank T3

f14 leak from tank T1

f15 leak from tank T2

f16 leak from tank T3

Table 5.13: Sensor locations and costs.

Symbol Measurement Cost

F1 Inflow 5

Pv Valve position 2

L1 Level in T1 1

L2 Level in T2 1

L3 Level in T3 1

CVv Control signal 0

pzp Pressure on pump inlet 1

n Pump rotational speed 2

99



Table 5.14: Diagnostic signals and their expected directions of change caused by faults.

Signals (sensor sets) f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

s1(F1,CVv, pzp, n) ± ± ± − − −

s2(F1, Pv, pzp, n) ± ± − − −

s3(Pv,CVv) ± ± ±

s4(F1, L3) ± ± − − + − − −

s5(Pv, L3, pzp, n) ± ± − − − − − + − − −

s6(L3,CVv, pzp, n) ± ± ± − − − − − + − − −

s7(L2, L3) ± ± − + −

s8(L1, L3) ± ± − − + − −

s9(F1, L2) ± ± − + + − − −

s10(Pv, L2, pzp, n) ± ± − − − − + + − − −

s11(L2,CVv, pzp, n) ± ± ± − − − − + + − − −

s12(F1, L2, L3) ± ± ± − + − −

s13(L1, L2, L3) ± ± ± − + −

s14(L2, L3,CVv, pzp, n) ± ± ± ± − − − − + − −

s15(Pv, L2, L3, pzp, n) ± ± ± − − − − + − −

s16(L1, L2) ± ± − + + − −

s17(F1, L1) ± ± + + + − − −

s18(F1, L1, L2) ± ± ± + −

s19(Pv, L1, L2, pzp, n) ± ± ± − − − + −

s20(L1,CVv, pzp, n) ± ± ± − − − + + + − − −

s21(Pv, L1, pzp, n) ± ± − − − + + + − − −

s22(F1, L1, L3) ± ± ± + + − −

s23(L1, L3,CVv, pzp, n) ± ± ± ± − − − + + − −

s24(Pv, L1, L3, pzp, n) ± ± ± − − − + + − −

s25(L1, L2,CVv, pzp, n) ± ± ± ± − − − + −
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Figure 5.5: Three tank system (Ostasz 2006).

Table 5.15: Results of optimization with various measures of isolability for the set of multi-valued

diagnostic signals.

Available budget

2: from 3 to 4: 5: 6: 7: from 8 to 12: 13:

Diagnosis accuracy with exoneration:

0.17: 0.56: 0.63: 0.67: 0.67: 0.75: 0.81:

L1 L2 L1 L2 L3 CVv L1 L2

L3 Pv

CVv L1 L2

L3 n pzp

CVv L1 L2

L3 n pzp

CVv L1 L2

L3 Pv n pzp

CVv F1 L1 L2 L3

Pv n pzp

Diagnosis accuracy without exoneration:

0.13: 0.31: 0.31: 0.33: 0.34: 0.54: 0.75:

L2 L3 L1 L2 L3 CVv L1 L2

L3 Pv

CVv L1 L2

L3 n pzp

F1 L2 L3 CVv L1 L2

L3 Pv n pzp

CVv F1 L1 L2 L3

Pv n pzp

Isolability Measure:

0.33: 0.53: 0.73: 0.83: 0.85: 0.93: 0.97:

L1 L2 L1 L2 L3 CVv L1 L2 n

pzp

CVv L1 L2

L3 n pzp

CVv L1 L2

Pv n pzp

CVv L1 L2

L3 Pv n pzp

CVv F1 L1 L2 L3

Pv n pzp

101



Table 5.16: Results of optimization with various measures of isolability for the set of binary diagnostic

signals.

Available budget

2: from 3 to 4: 5: 6: 7: from 8 to 12: 13:

Diagnosis accuracy with exoneration:

0.13: 0.50: 0.56: 0.63: 0.63: 0.69: 0.75:

CVv Pv L1 L2 L3 CVv L1 L2

L3 Pv

CVv L1 L2

L3 n pzp

CVv L1 L2

L3 n pzp

CVv L1 L2

L3 Pv n pzp

CVv F1 L1 L2 L3

Pv n pzp

Diagnosis accuracy without exoneration:

0.11: 0.205: 0.214: 0.23: 0.24: 0.39: 0.55:

CVv Pv L1 L2 L3 CVv L1 L2

L3 Pv

CVv L1 L2

L3 n pzp

CVv L2 L3

Pv n pzp

CVv L1 L2

L3 Pv n pzp

CVv F1 L1 L2 L3

Pv n pzp

Isolability Measure:

0.26: 0.48: 0.64: 0.73: 0.75: 0.87: 0.93:

L1 L2 L1 L2 L3 CVv L1 L2

L3 Pv

CVv L1 L2

L3 n pzp

CVv L1 L2

Pv n pzp

CVv L1 L2

L3 Pv n pzp

CVv F1 L1 L2 L3

Pv n pzp

Diagnosability degree:

0.13: 0.50: 0.56: 0.63: 0.63: 0.69: 0.75:

CVv Pv L1 L2 L3 CVv L1 L2

L3 Pv

CVv L1 L2

L3 n pzp

CVv L1 L2

L3 n pzp

CVv L1 L2

L3 Pv n pzp

CVv F1 L1 L2 L3

Pv n pzp

Isolability Index with exoneration:

126: 194: 218: 218: 218: 224: 230:

L1 L2 L1 L2 L3 CVv L1 L2

L3 Pv

CVv L1 L2

L3 Pv

CVv L1 L2

L3 Pv

CVv L1 L2

L3 Pv n pzp

CVv F1 L1 L2 L3

Pv n pzp

Isolability Index without exoneration:

63: 115: 154: 175: 179: 208: 223:

L1 L2 L1 L2 L3 CVv L1 L2

L3 Pv

CVv L1 L2

L3 n pzp

CVv L1 L2

Pv n pzp

CVv L1 L2

L3 Pv n pzp

CVv F1 L1 L2 L3

Pv n pzp
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The achieved results are very close despite the used isolability metric. In each case, if a

budget is greater than 7, the results are identical for all considered metrics. This is due to the fact

that the set of sensors {CVv, L1, L2, L3, Pv, n, pzp} is the cheapest set providing detectability of

all considered faults. In each case, when the available budget is equal to 13, all of the proposed

sensors are selected.

There are 4 differences in optimization results obtained from multi-valued and binary di-

agnostic signals. They were marked bold in Tab. 5.15. The sensor sets from Tab. 5.16 that

are different than those from Tab. 5.15 were analyzed. The corresponding values of isolability

metrics were calculated with FIS. Diagnosis accuracy with exoneration for the set {CVv, Pv}

equals 0.13. Diagnosis accuracy without exoneration for the same set is 0.11. Both values are

identical as in the case of BDM because the signal s3 does not provide any new fault isolability

in the multi-valued case. The set {CVv, L2, L3, Pv, n, pzp} with diagnosis accuracy without ex-

oneration gives the value of the metric equal to 0.32. Finally, the isolability measure of the set

{CVv, L1, L2, L3, Pv} is 0.69.

The results obtained with BDM are close to optimal results obtained with FIS. This shows

that results of binary optimization can be chosen as a reasonable initial guess for the optimization

algorithm used for multi-valued diagnostic signals. It is especially important because computa-

tional complexity of calculation of metrics of isolability grows with the increase of the number

of alternative fault signatures. In the analyzed example, the optimization procedure for binary

diagnostic signals is on average 2.1 times faster than for multi-valued ones.

It is also worth noticing that in all studied cases the value of the isolability measure obtained

for FIS is greater than for BDM. Similarly, a greater value of isolability is obtained where

exoneration is taken into consideration. The optimization results for budget value 7 with the

exoneration assumption are in all cases identical to those with available budget equal to 6,

whereas without that assumption the results are different. This implies that smaller differences

between solutions are taken into consideration without adoption of the exoneration assumption.

When designing a diagnostic system, it is important to check if this assumption can be satisfied.

If the expected time between occurrence of the first and last symptom is greater than the time

needed to formulate a diagnosis, then the assumption may generate false diagnoses.
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5.9 Conclusion

In this chapter the sensor placement problemwas addressed. A key contribution is formulation of

the objective function based on the proposed metric of fault isolability. A strategy of introducing

new variables to obtain BILP and MILP problems was presented. This makes it possible to use

efficient solvers to find optimal sets of sensors.

The proposed method can be used for both binary and multi-valued diagnostic signals. The

performed tests showed that, for the Three Tank System, the results for both types of diagnostic

signals were similar in most cases. Therefore, results from optimal sensor placement are good

initial guesses for optimal sensor placement with multi-valued diagnostic signals. It would allow

to ignore groups of possible solutions early using the branch-and-bound algorithm and result in

a significant decrease in time needed to solve an optimization problem. The following algorithm

can be used to efficiently solve optimal sensor placement problems for FIS:

1. Transform FIS into BDM by replacing non-zero values with 1.

2. Solve the optimal sensor placement problem for BDM.

3. Solve the original problem using the solution from step (2) as an initial guess.

Various possible additional constraints were analyzed. They include budgetary constraints

and the required detectability and isolability of faults.
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Chapter 6

Summary

A novel metric of single fault isolability was introduced in this thesis. This metric has the

following features:

• It is applicable to various types of diagnostic signals, e.g., binary, multi-valued, continuous,

and sequences of symptoms.

• It makes it possible to distinguish weak and unidirectional strong isolability.

• It can be used to formulate a linear optimal sensor placement problem that can be solved

with standard optimization solvers.

There are other known metrics of isolability, but they do not have all features of the proposed

metric.

• Diagnosability degree (Travé-Massuyès et al. 2001) can be only used with binary diag-

nostic signals. It does not differentiate between weak and strong isolability and cannot be

used as a linear objective function in an optimal sensor placement problem.

• Diagnosis accuracy (Kościelny 2001) can be used with any type of diagnostic signals and

distinguish weak and strong isolability. However, it is very computationally complex, and

an optimal sensor placement problem formulated with it is not linear.

• Isolability index (Sarrate et al. 2014) can be used as a linear objective function or a

constraint and considers weak and strong isolability. It cannot, however, be used with

diagnostic signals different than binary.
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A quantitative, general approach to the analysis of fault isolability makes it possible to

compare different methods of fault detection and isolation. Such approach can be used in the

design phase of a diagnostic system. In particular, a quantitative analysis of fault isolability

is indispensable when formulating and solving the problem of optimal sensor placement for

diagnostic purposes.

6.1 Main contributions

The author considers the following contributions of this thesis the most important:

• Gathering formal definitions of fault isolability for various types of FDI systems and the

rules of combining these definitions (Chapter 2). The analyzed types of diagnostic struc-

tures include BDM, FIS, sequential residuals, functional diagnosability and directional

residuals.

• The novel metric of isolability proposed in Chapter 3. It can be used with binary, multi-

valued and continuous diagnostic signals. It takes into account unidirectional strong

isolability.

• A method of calculation of the metric of isolability for sequences of symptoms by con-

structing multi-valued diagnostic signals that provide identical isolability properties (Sec-

tion 3.2.4).

• A method of formulation of an optimal sensor placement problem using the proposed

metric of isolability. It can be used with binary (Section 5.2) and multi-valued diagnostic

signals and sequences of symptoms (Section 5.3). The obtained optimization problem

is a Mixed Integer Linear Programming problem, which can be solved using standard

optimization tools and frameworks.

• A method for formulation of linear constraints, which can be added to an optimization

problem, including budgetary constraints or detectability and isolability requirements

(Section 5.2.1).
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6.2 Future work

The optimal sensor placement problem is getting increased attention in the field of diagnostics

of processes. It is also an important step towards automated or semi-automated tools supporting

the development of diagnostic systems. It can be useful when combined with other approaches

that are focused on automatic generation of potential structures of qualitative models, i.e., a

graph of a process GP (Sztyber et al. 2015; Sztyber 2017) or a bond graph (Biswas et al. 2009;

Ould-Bouamama et al. 2012). However, further work that focuses on the generation of model

structures is necessary.

Another unsolved problem is how to efficiently optimize sensor placement in large-scale

systems. Such systems can usually be partially decoupled. However, optimal decoupling of

such systems is an open question.

The assumption about faultlessness of sensors is obviously unrealistic. An assumption

regarding faultless sensors, which is adopted in this thesis, should be relaxed in future works. In

general, the methods presented in Chapter 5 are sufficient for a formulation of a sensor placement

problem with the assumption of faulty sensors. However, the problem is no longer linear, and it

is much more complex to solve.

6.3 Acknowledgements

This work was partially supported by the Warsaw University of Technology, Faculty of Mecha-

tronics Dean’s Grants: 504/01536, 504/02141 and 504/02801.

107



Bibliography

Bartyś, Michał (2013). “Generalized reasoning about faults based on the diagnostic matrix”. In:

International Journal of Applied Mathematics and Computer Science 23.2, pp. 407–417.

doi: 10.2478/amcs-2013-0031.

Bartyś,Michał (2014). “Multiple Fault IsolationAlgorithmBased onBinaryDiagnosticMatrix”.

In: Intelligent Systems in Technical and Medical Diagnostics. Springer, pp. 441–452.

Bartyś, Michał (2015). “Diagnosing Multiple Faults with the Dynamic Binary Matrix”. In:

IFAC-PapersOnLine 48.21, pp. 1297–1302.

Bartyś, Michał (2016a). “Single Fault Isolability Metrics of the Binary Isolating Structures”. In:

Advanced and Intelligent Computations in Diagnosis and Control. Springer, pp. 61–75.

Bartyś, Michał (2016b). “The weak isolability of the structure of binary residuals of multiple

faults”. In: Advanced Mechatronics Solutions. Ed. by Ryszard Jabłoński and Tomas Brezina.

Springer International Publishing, pp. 3–11. isbn: 978-3-319-23923-1. doi: 10.1007/978-

3-319-23923-1_1. url: http://dx.doi.org/10.1007/978-3-319-23923-1_1.

Bartyś, Michał et al. (2006). “Introduction to the DAMADICS actuator FDI benchmark study”.

In: Control Engineering Practice 14.6. A Benchmark Study of Fault Diagnosis for an

Industrial ActuatorA Benchmark Study of Fault Diagnosis for an Industrial Actuator, pp. 577

–596. issn: 0967-0661. doi: http://dx.doi.org/10.1016/j.conengprac.2005.06.

015.

Basseville, Michèle (1997). “Information criteria for residual generation and fault detection and

isolation”. In: Automatica 33.5, pp. 783–803.

Basseville, Michèle (2001). “On fault detectability and isolability”. In: European Journal of

Control 7.6, pp. 625–637.

108

https://doi.org/10.2478/amcs-2013-0031
https://doi.org/10.1007/978-3-319-23923-1_1
https://doi.org/10.1007/978-3-319-23923-1_1
http://dx.doi.org/10.1007/978-3-319-23923-1_1
https://doi.org/http://dx.doi.org/10.1016/j.conengprac.2005.06.015
https://doi.org/http://dx.doi.org/10.1016/j.conengprac.2005.06.015


Biswas, Gautam et al. (2004). “Diagnosis of complex systems: Bridging the methodologies of

the FDI and DX communities”. In: Systems, Man, and Cybernetics, Part B: Cybernetics,

IEEE Transactions on 34.5, pp. 2159–2162.

Biswas, Gautam et al. (2009). “Analytic redundancy, possible conflicts, and TCG-based fault

signature diagnosis applied to nonlinear dynamic systems”. In: IFAC Proceedings Volumes

42.8, pp. 1486–1491.

Blanke, Mogens et al. (2006). Diagnosis and fault-tolerant control. Vol. 691. Springer.

Boyd, Stephen and Lieven Vandenberghe (2004). Convex optimization. Cambridge university

press.

Chen, Jie and Ron J Patton (1999). Robust model-based fault diagnosis for dynamic systems.

Springer Science & Business Media.

Chen, Jie and Ron J Patton (2012). Robust model-based fault diagnosis for dynamic systems.

Vol. 3. Springer Science & Business Media.

Chow, E. and A.S. Willsky (June 1984). “Analytical redundancy and the design of robust failure

detection systems”. In: Automatic Control, IEEE Transactions on 29.7, pp. 603–614. issn:

0018-9286. doi: 10.1109/TAC.1984.1103593.

Cordier, Marie-Odile et al. (2004). “Conflicts versus analytical redundancy relations: a com-

parative analysis of the model based diagnosis approach from the artificial intelligence and

automatic control perspectives”. In: Systems, Man, and Cybernetics, Part B: Cybernetics,

IEEE Transactions on 34.5, pp. 2163–2177.

De Kleer, Johan and Brian C Williams (1987). “Diagnosing multiple faults”. In: Artificial

intelligence 32.1, pp. 97–130.

De Kleer, Johan, Alan K Mackworth, and Raymond Reiter (1992). “Characterizing diagnoses

and systems”. In: Artificial Intelligence 56.2, pp. 197–222.

Ding, Steven X (2008). Model-based fault diagnosis techniques: design schemes, algorithms,

and tools. Springer Science & Business Media.

Düştegör, Dilek et al. (2006). “Structural analysis of fault isolability in the DAMADICS bench-

mark”. In: Control Engineering Practice 14.6, pp. 597–608.

109

https://doi.org/10.1109/TAC.1984.1103593


Eriksson, Daniel, Erik Frisk, and Mattias Krysander (2013). “A method for quantitative fault di-

agnosability analysis of stochastic linear descriptor models”. In: Automatica 49.6, pp. 1591–

1600.

Fillatre, L. and I. Nikiforov (Feb. 2007). “Non-Bayesian Detection and Detectability of Anoma-

lies From a Few Noisy Tomographic Projections”. In: Signal Processing, IEEE Transactions

on 55.2, pp. 401–413. issn: 1053-587X. doi: 10.1109/TSP.2006.885693.

Flouladirad, M. and I. Nikiforov (June 2003). “Optimal statistical fault detection with nuisance

parameters”. In:American Control Conference, 2003. Proceedings of the 2003. Vol. 4, 2997–

3002 vol.4. doi: 10.1109/ACC.2003.1243781.

Frank, Paul M (1994). “On-line fault detection in uncertain nonlinear systems using diagnostic

observers: a survey”. In: International journal of systems science 25.12, pp. 2129–2154.

Frisk, Erik et al. (2012). “Diagnosability analysis considering causal interpretations for differ-

ential constraints”. In: Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE

Transactions on 42.5, pp. 1216–1229.

Gertler, J (1997). “Fault detection and isolation using parity relations”. In: Control Engineering

Practice 5.5, pp. 653 –661. issn: 0967-0661. doi: http://dx.doi.org/10.1016/S0967-

0661(97)00047-6. url: http://www.sciencedirect.com/science/article/pii/

S0967066197000476.

Gertler, Janos (1991). “Analytical redundancy methods in fault detection and isolation”. In:

Preprints of IFAC/IMACS Symposium on Fault Detection, Supervision and Safety for Tech-

nical Processes SAFEPROCESS’91, pp. 9–21.

Gertler, Janos (1998). Fault detection and diagnosis in engineering systems. CRC press.

Gertler, Janos (2000). “Structured Parity Equations in Fault Detection and Isolation”. In: Issues

of fault diagnosis for dynamic systems. Springer, pp. 285–313.
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